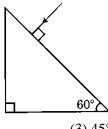

# **Section-A (Physics)**

Q.1 An inductor of inductance L, a capacitor of capacitance C and a resistor of resistance 'R' are connected in series to an a c source of potential difference 'V' volts as shown in figure. Potential difference across L, C and R is 40 V, 10 V and 40 V, respectively. The amplitude of current flowing through LCR series circuit is  $10\sqrt{2}$  A. The impedance of the circuit is :



 $(1)\,4\,\sqrt{2}\,\Omega$ 


 $(3) 4\Omega$ 

 $(4) 5 \Omega$ 

**(4)** Ans:

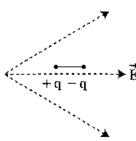
Sol:

Find the value of the angle of emergence from the prism. Refractive index of the glass is  $\sqrt{3}$ Q.2



 $(1) 60^{\circ}$ 

 $(2) 30^{\circ}$ 


 $(3) 45^{\circ}$ 

 $(4) 90^{\circ}$ 

(1) Ans:

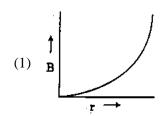
Sol:

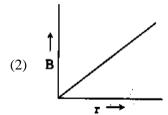
Q.3 A dipole is placed in an electric field as shown. In which direction will it move?

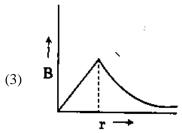


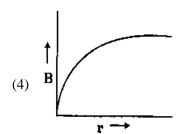
- (1) towards the left as its potential energy will increase.
- (2) towards the right as its potential energy will decrease.
- (3) towards the left as its potential energy will decease.
- (4) towards the right as its potential energy will increase.

(2) Ans:


Sol:


- Q.4 A capacitor of capacitance 'C', is connected across an ac source of voltage V, given by  $V = V_0 \sin \omega t$ The displacement current between the plates of the capacitor, would then be given by:
  - $(1) \ I_d = \ V_0 \ \omega C \cos \omega t \quad (2) \ I_d = \ \frac{V_0}{\omega C} \cos \omega t \qquad (3) \ I_d = \ \frac{V_0}{\omega C} \sin \omega t \qquad (4) \ I_d = \ V_0 \ \omega C \sin \omega t$


(1)Ans:


Sol:

Q.5 A thick current carrying cable of radius 'R' carries current 'I' uniformly distributed across its crosssection. The variation of magnetic field B(r) due to the cable with the distance 'r' from the axis of the cable is represented by









Ans: (3)Sol:

Q.6 A convex lens 'A' of focal length 20 cm and a concave lens 'B' of focal length 5 cm are kept along the same axis with distance 'd' between them. If a parallel beam of light falling on 'A' leaves 'B' as a parallel beam, then the distance 'd' in cm will be:

(1)25

(2) 15

(3)50

(4) 30

Ans: (2)

Sol:

Q.7 An electromagnetic wave of wavelength '\(\lambda\)' is incident on a photosensitive surface of negligible work function. If 'm' mass is of photoelectron emitted from the surface has de-Broglie wavelength  $\lambda_d$ , then:

 $(1) \lambda = \left(\frac{2m}{hc}\right)\lambda_d^2 \qquad (2) \lambda_d = \left(\frac{2mc}{h}\right)\lambda^2 \qquad (3) \lambda = \left(\frac{2mc}{h}\right)\lambda_d^2 \qquad (4) \lambda = \left(\frac{2h}{mc}\right)\lambda_d^2$ 

Ans:

(3)

Sol:

0.8 **Column-I** gives certain physical terms associated with flow of current through a metallic conductor. **Column-II** gives some mathematical relations involving electrical quantities.

Match Column-II and Column-II with appropriate relations.

#### Column-I

#### Column-II

(A) Drift Velocity

(P)  $\frac{m}{ne^2\rho}$ 

(B) Electrical Resistivity

(Q) nev<sub>d</sub>

(C) Relaxation Period

(R)  $\frac{eE}{m}\tau$ 

(D) Current Density

(S)  $\frac{E}{I}$ 

(1) (A)-(R), (B)-(S), (C)-(P), (D)-(Q)

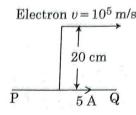
(2) (A)-(R), (B)-(S), (C)-(Q), (D)-(P)

(3) (A)-(R), (B)-(P), (C)-(S), (D)-(Q)

(4) (A)-(R), (B)-(Q), (C)-(S), (D)-(P)

| Sol:         |                                                    |                                                                                               |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |  |  |
|--------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--|--|
| Q.9          | A radioactive nucl                                 | A radioactive nucleus <sup>A</sup> <sub>Z</sub> X undergoes spontaneous decay in the sequence |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |  |  |
|              | $_{z}^{A}X \rightarrow _{z-1}B \rightarrow _{z-1}$ | $_{-3}C \rightarrow _{Z-2}D$ , where Z is                                                     | s the atomic number of                  | of element X. the possible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | decay    |  |  |
|              | particles in the sec                               | quence are :                                                                                  |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |  |  |
|              |                                                    | (2) $\alpha$ , $\beta^+$ , $\beta^-$                                                          | (3) $\beta^+$ , $\alpha$ , $\beta^-$    | (4) $\beta^-$ , $\alpha$ , $\beta^+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |  |  |
| Ans:<br>Sol: | (3)                                                |                                                                                               |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |  |  |
| Q.10         |                                                    | and same material is 0.                                                                       |                                         | our wires of equal light, eque effective resistance if the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |  |  |
| Ans:<br>Sol: | <ul><li>(1) 0.25 Ω</li><li>(4)</li></ul>           | $(2)~0.5~\Omega$                                                                              | (3) 1 Ω                                 | $(4)~4~\Omega$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |  |  |
| Q.11         | energy is three tin                                | -                                                                                             |                                         | rth. At a certain height its face of earth and the speed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |  |  |
|              | $(1) \frac{S}{4}, \frac{3gS}{2}$                   | $(2) \frac{S}{4}, \frac{\sqrt{3gS}}{2}$                                                       | $(3) \frac{S}{2}, \frac{\sqrt{3gS}}{2}$ | $(4) \frac{S}{4}, \sqrt{\frac{3gs}{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |  |  |
| Ans:<br>Sol: | (4)                                                |                                                                                               |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |  |  |
| Q.12         | The half-life of a after 150 hours wo              |                                                                                               | 00 hours. The fraction o                | f original activity that will                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | remain   |  |  |
|              | (1) 1/2                                            | (2) $\frac{1}{2\sqrt{2}}$ .                                                                   | (3) $\frac{2}{3}$                       | (4) $\frac{2}{3\sqrt{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |  |  |
| Ans:<br>Sol: | (2)                                                |                                                                                               |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |  |  |
| Q.13         |                                                    |                                                                                               | ·                                       | oom temperature is 20°C. The component of the component o |          |  |  |
|              | (1) $\frac{13}{10}$ t                              | (2) $\frac{13}{5}$ t                                                                          | (3) $\frac{10}{13}$ t                   | (4) $\frac{5}{13}$ t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |  |  |
| Ans:<br>Sol: | (2)                                                |                                                                                               |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |  |  |
| Q.14         | wavelength 600 n                                   | m, when it delivers the p                                                                     | bower of $3.3 \times 10^{-3}$ wa        | source of monochromatic l<br>tt will be: $(h = 6.6 \times 10^{-3})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -        |  |  |
| Ans:<br>Sol: | (1) 10 <sup>18</sup><br>(3)                        | $(2) 10^{17}$                                                                                 | (3) 10 <sup>16</sup>                    | $(4) 10^{15}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |  |  |
| Q.15         | A body is execute energy is:                       | ing simple harmonic me                                                                        | otion with frequency '                  | n', the frequency of its po                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | otential |  |  |

Ans: (1)


(3) 3n

(4) 4n

Ans:

Sol:

An infinitely long straight conductor carries a current of 5 A as shown. An electron is moving with a Q.16 speed of 10<sup>5</sup> m/s parallel to the conductor. The perpendicular distance between the electron and the conductor is 20 cm at an instant. Calculate the magnitude of the force experienced by the electron at that instant.



 $(1) 4 \times 10^{-20} \text{ N}$ 

(2)  $8\pi \times 10^{-20} \text{ N}$ 

(3)  $4\pi \times 10^{-20} \text{ N}$  (4)  $8 \times 10^{-20} \text{ N}$ 

**(4)** Ans:

Sol:

Q.17 If force [F], acceleration [A] and time [T] are chosen as the fundamental physical quantities. Find the dimensions of energy.

(1) [F][A][T]

(2)  $[F][A][T^2]$ 

(3)  $[F][A][T^{-1}]$  (4)  $[F][A^{-1}][T]$ 

Ans: (2)

Sol:

Match Column - I and Column - II and choose the correct match from the given choices. Q.18

|     | Column – I                                        | Colu | ımn - II                       |
|-----|---------------------------------------------------|------|--------------------------------|
| (A) | Root mean square speed of gas molecules           | (P)  | $\frac{1}{3}$ nm $\bar{v}^2$   |
| (B) | Pressure exerted by ideal gas                     | (Q)  | $\sqrt{\frac{3RT}{M}}$         |
| (C) | Average kinetic energy of a molecule              | (R)  | $\frac{5}{2}$ RT               |
| (D) | Total internal energy of 1 mole of a diatomic gas | (S)  | $\frac{3}{2}$ k <sub>B</sub> T |

(1) (A) - (R), (B) - (P), (C) - (S), (D) - (Q)

(2) (A) - (Q), (B) - (R), (C) - (S), (D) - (P)

(3) (A) - (Q), (B) - (P), (C) - (S), (D) - (R)

(4)(A)-(R),(B)-(Q),(C)-(P),(D)-(S)

Ans:

(3)

Sol:

0.19 A small block slides down on a smooth inclined plane, starting from rest at time t =0. Let  $S_n$  be the uncertainty  $S_n$  is:  $n. \text{ Then, the ratio } \frac{S_n}{S_{n+1}} \text{ is :}$   $(2) \frac{2n-1}{2n+1}$ 0. Let  $S_n$  be the distance travelled by the block in the interval t = n - 1 to t = n - 1

 $(3)\frac{2n+1}{2n-1} \qquad (4) \frac{2n}{2n-1}$ 

Ans:

(2)

| Q.20           | A nucleus with mass number 240 breaks into two fragments each of mass number 120, the binding energy per nucleon of unfragmented nuclei is 7.6MeV while that of fragments is 8.5MeV. The total gain in the Binding Energy in the process is:                                                                                                       |                                                               |                                          |                                                 |  |  |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------|-------------------------------------------------|--|--|
| Ans:           | (1) 0.9MeV (4)                                                                                                                                                                                                                                                                                                                                     | ergy in the process is: (2) 9.4MeV                            | (3) 804MeV                               | (4) 216MeV                                      |  |  |
| Sol:<br>Q.21   | Main scale reading: 0 : Circular scale reading:                                                                                                                                                                                                                                                                                                    | mm 52 divisions tain scale corresponds to                     | nen used to measure the d                | iameter of a wire reular scale. The diameter of |  |  |
| Ans:<br>Sol:   | (1) 0.52 cm<br>(4)                                                                                                                                                                                                                                                                                                                                 | (2) 0.026 cm                                                  | (3) 0.26 cm                              | (4) 0.052 cm                                    |  |  |
| Q.22           | The equivalent capacita                                                                                                                                                                                                                                                                                                                            | ance of the combination                                       | shown in the figure is:                  |                                                 |  |  |
|                |                                                                                                                                                                                                                                                                                                                                                    |                                                               | c                                        |                                                 |  |  |
| Ans:<br>Sol:   | (1) 3C<br>(2)                                                                                                                                                                                                                                                                                                                                      | (2)2C                                                         | $(3)\frac{c}{2}$                         | $(4)\frac{3C}{2}$                               |  |  |
| Q.23 Ans: Sol: | A lens of large focal length and large aperture best suited as an objective of an astronomical telescope since:  (1) a large aperture contributes to the quality and visibility of the images.  (2) a large area of the objective ensures better light gathering power.  (3) a large aperture provides a better resolutions  (4) all of the above. |                                                               |                                          |                                                 |  |  |
| Q.24           |                                                                                                                                                                                                                                                                                                                                                    | l conductors of radius s of the spheres $(\sigma_1/\sigma_2)$ |                                          | by a wire. Then the ratio                       |  |  |
| Ans:<br>Sol:   | $(1)\frac{R_1}{R_2}$ (2)                                                                                                                                                                                                                                                                                                                           | $(2)\frac{R_2}{R_1}$                                          | $(3)\sqrt{\left(\frac{R_1}{R_2}\right)}$ | $(4)  \frac{R_1^2}{R_2^2}$                      |  |  |
| Q.25           | A spring is stretched of 2kg is suspended by                                                                                                                                                                                                                                                                                                       | •                                                             | N. The time period of the                | ne oscillations when a mass                     |  |  |
| Ans:<br>Sol:   | (1) 0.0628 s<br>(4)                                                                                                                                                                                                                                                                                                                                | (2) 6.28 s                                                    | (3) 3.14 s                               | (4) 0.628 s                                     |  |  |

| Q.26         | combination gives the correct possible directions for electric field (E) and magnetic field (E respectively?                                                                                                                                                                                                                                                                                                                     |                                                  |                                                      |                                                                    |  |  |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------|--|--|
| Ans:<br>Sol: | $(1) \hat{j} + \hat{k}, \hat{j} + \hat{k}$ $(2)$                                                                                                                                                                                                                                                                                                                                                                                 | $(2)-\hat{\jmath}+\hat{k},-\hat{\jmath}-\hat{k}$ | $(3)\hat{\jmath} + \hat{k}, -\hat{\jmath} - \hat{k}$ | $(4) - \hat{\jmath} + \hat{k}, -\hat{\jmath} + \hat{k}$            |  |  |
| Q.27         | The escape velocity fro                                                                                                                                                                                                                                                                                                                                                                                                          | om the Earth's surface is                        | s $v$ . The escape velocity                          | from the surface of another                                        |  |  |
|              | -                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  | and same mass density is                             |                                                                    |  |  |
|              | (1) <i>v</i>                                                                                                                                                                                                                                                                                                                                                                                                                     | (2) $2v$                                         | (3) 3v                                               | (4) 4v                                                             |  |  |
| Ans:<br>Sol: | (4)                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  |                                                      |                                                                    |  |  |
| Q.28         | -                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                                | •                                                    | cm length of wire. If another the balance point occurs?  (4) 62 cm |  |  |
| Ans:<br>Sol: | (1)                                                                                                                                                                                                                                                                                                                                                                                                                              | (2) 2 210 011                                    | (6) 6 7 6                                            | (1) 52 5111                                                        |  |  |
| Q.29         | The velocity of a sma                                                                                                                                                                                                                                                                                                                                                                                                            | ll ball of mass M and                            | density d, when droppe                               | d in a container filled with                                       |  |  |
|              | glycerine becomes con                                                                                                                                                                                                                                                                                                                                                                                                            | stant after some time. If                        | f the density of glycerine                           | e is $\frac{d}{2}$ , then the viscous force                        |  |  |
|              | acting on the ball will b                                                                                                                                                                                                                                                                                                                                                                                                        | e:                                               |                                                      |                                                                    |  |  |
|              | $(1)\frac{\text{Mg}}{2}$                                                                                                                                                                                                                                                                                                                                                                                                         | (2) Mg                                           | $(3)\frac{3}{2}Mg$                                   | (4) 2Mg                                                            |  |  |
| Ans:         | (1)                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  |                                                      |                                                                    |  |  |
| Sol:         |                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                  |                                                      |                                                                    |  |  |
| Q.30         |                                                                                                                                                                                                                                                                                                                                                                                                                                  | lates is 'd' and the area                        |                                                      | te between the plates. If the energy stored in the capacitor       |  |  |
|              | $(1)\frac{1}{2}\varepsilon_0 E^2$                                                                                                                                                                                                                                                                                                                                                                                                | (2) $\varepsilon_0$ EAd                          | $(3)\frac{1}{2}\varepsilon_0 E^2 Ad$                 | $(4) \frac{E^2 Ad}{\varepsilon_0}$                                 |  |  |
| Ans:<br>Sol: | (3)                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  | _                                                    | <b>C</b> 0                                                         |  |  |
| Q.31         | The electron concentration in an n-type semiconductor is the same as hole concentration in a p-type semiconductor. An external field (electric) is applied across each of them. Compare the currents in them.  (1) current in $n$ – type = current in p-type.  (2) current in p-type > current in n-type.  (3) current in $n$ – type > current in p-type.  (4) No current will flow in p-type, current will only flow in n-type. |                                                  |                                                      |                                                                    |  |  |
| Ans:<br>Sol: | (3)                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  |                                                      |                                                                    |  |  |

Consider the following statements (A) and (B) and identify the correct answer.

Q.32

(A) A zener diode is connected in reverse bias, when used as a voltage regulator.

(B) The potential barrier of p - n junction lies between 0.1 V to 0.3 V.

(1) (A) and (B) both are correct.

(2) (A) and (B) both are incorrect.

(3) (A) is correct and (B) is incorrect.

(4) (A) is incorrect but (B) is correct.

Ans: (3)

Sol:

Q.33 Polar molecules are the molecules:

- (1) having zero dipole moment.
- (2) acquire a dipole moment only in the presence of electric field due to displacement of charges.
- (3) acquire a dipole moment only when magnetic field is absent.
- (4) having a permanent electric dipole moment.

Ans: (4)

Sol:

If E and G respectively denote energy and gravitational constant, then  $\frac{E}{G}$  has the dimensions of: Q.34

 $(1) [M^2][L^{-1}][T^0] \qquad (2) [M][L^{-1}][T^{-1}] \qquad (3) [M][L^0][T^0] \qquad (4) [M^2][L^{-2}][T^{-1}]$ 

(1) Ans:

Sol:

Q.35 Water falls from a height of 60 m at the rate of 15 kg/s to operate a turbine. The losses due to frictional force are 10% of the input energy. How much power is generated by the turbine? (g =  $10 \text{ m/s}^2$ )

(1) 10.2 kW

(2) 8.1 kW

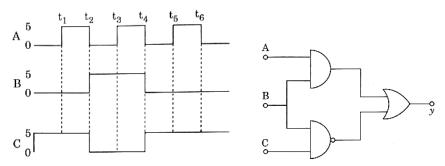
(3) 12.3 kW

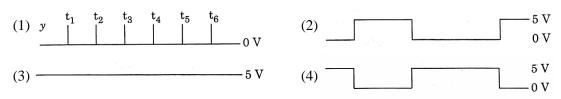
(4) 7.0 kW

Ans: (2)

Sol:

### Section-B (Physics)


A car starts from rest and accelerates at 5 m/s<sup>2</sup>. At t = 4 s, a ball is dropped out of a window by a Q.36 person sitting in the car. What is the velocity and acceleration of the ball at t = 6 s? (Take  $g = 10 \text{ m/s}^2$ )


(1) 20 m/s, 5 m/s<sup>2</sup> (2) 20 m/s, 0 (3)  $20\sqrt{2}$  m/s, 0 (4)  $20\sqrt{2}$  m/s, 10 m/s<sup>2</sup>

**(4)** Ans:

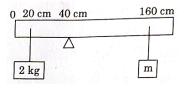
Sol:

For the given circuit, the input digital signals are applied at the terminals A, B and C. What would be Q.37 the output at the terminal y?





(3) Ans:


Sol:

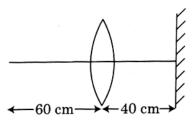
- A ball of mass 0.15 kg is dropped from a height 10 m, strikes the ground and rebounds to the same Q.38 height. The magnitude of impulse imparted to the ball is  $(g = 10 \text{ m/s}^2)$  nearly:
- $(3) \frac{2.1 \text{ kg m}}{s}$

Ans:

Sol:

Q.39 A uniform rod of length 200 cm and mass 500 g is balanced on a wedge placed at 40 cm mark. A mass of 2 kg is suspended from the rod at 20 cm and another unknown mass 'm' is suspended from the rod at 160 cm mark as shown in the figure. Find the value of 'm' such that the rod is in equilibrium. ( $g = 10 \text{ m/s}^2$ )




- $(1)^{\frac{1}{2}}$  kg

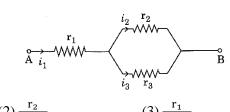
- $(4)\frac{1}{12}$  kg

Ans: **(4)** 

Sol:

Q.40 A point object is placed at a distance of 60 cm from a convex lens of focal length 30 cm. If a plane mirror were put perpendicular to the principal axis of the lens and at a distance of 40 cm from it, the final image would be formed at a distance of:




- (1) 20 cm from the lens, it would be a real image.
- (2) 30 cm from the lens, it would be a real image.
- (3) 30 cm from the plane mirror, it would be a virtual image.
- (4) 20 cm from the plane mirror, it would be a virtual image.

Ans: **(4)** 

Sol:

- Q.41 A step down transformer connected to an ac mains supply of 220 V is made to operate at 11 V, 44 W lamp. Ignoring power losses in the transformer, what is the current in the primary circuit?
  - (1) 0.2 A
- (2) 0.4 A
- (3) 2 A
- (4) 4 A

Ans: (1) Q.42 Three resistors having resistances r<sub>1</sub>, r<sub>2</sub> and r<sub>3</sub> are connected as shown in the given circuit. The ratio  $\frac{i_3}{i_4}$  of currents in terms of resistances used in the circuit is:



Ans: Sol:

0.43 In the product

$$\vec{F} = q(\vec{v} \times \vec{B})$$
  
=  $q\vec{v} \times (B\hat{\imath} + B\hat{\jmath} + B_0\hat{k})$ 

For 
$$q = 1$$
 and  $\vec{v} = 2\hat{\imath} + 4\hat{\jmath} + 6\hat{k}$  and

$$\vec{F} = 4\hat{\imath} - 20\hat{\jmath} + 12\hat{k}$$

What will be the complete expression for  $\vec{B}$ ?  $(1) -8\hat{\imath} - 8\hat{\jmath} - 6\hat{k}$   $(2) -6\hat{\imath} - 6\hat{\jmath} - 8\hat{k}$   $(3) 8\hat{\imath} + 8\hat{\jmath} - 6\hat{k}$   $(4) 6\hat{\imath} + 6\hat{\jmath} - 8\hat{k}$ 

Ans: (2)

Sol:

A particle of mass 'm' is projected with a velocity  $v = kV_e(k < 1)$  from the surface of the Q.44 earth. ( $V_e$  = escape velocity)

The maximum height above the surface reached by the particle is:

- (1)  $R\left(\frac{k}{1-k}\right)^2$  (2)  $R\left(\frac{k}{1+k}\right)^2$  (3)  $\frac{R^2k}{1+k}$  (4)  $\frac{Rk^2}{1-k^2}$

Ans:

Sol:

Twenty seven drops of same size are charged at 220 V each. They combine to form a bigger drop. Q.45 Calculate the potential of the bigger drop.

- (1) 660 V
- (2) 1320 V
- (3) 1520 V
- (4) 1980 V

Ans: (4)

Sol:

A series LCR circuit containing 5.0H inductor,  $80\mu F$  capacitor and  $40\Omega$  resistor is connected 0.46 to 230 V variable frequency ac source. The angular frequencies of the source at which power transferred to the circuit is half the power at the resonant angular frequency are likely to be:

(1) 25rad/s and 75rad/s

(2) 50rad/s and 25rad/s

(3) 46rad/s and 54rad/s

(4) 42rad/s and 58rad/s

Ans: (3)

| Q.47 | A uniform conducting                                | g wire of length 12a an  | d resistance 'R' is wou    | nd up as a current carrying coil |
|------|-----------------------------------------------------|--------------------------|----------------------------|----------------------------------|
|      | in the shape of,                                    |                          |                            |                                  |
|      | (i) an equilateral trian                            | gle of side ' a '.       |                            |                                  |
|      | (ii) a square of side ' a                           | ι'.                      |                            |                                  |
|      | The magnetic dipole r                               | noments of the coil in o | each case respectively are | e:                               |
|      | (1) $\sqrt{3}$ Ia <sup>2</sup> and 3Ia <sup>2</sup> | $(2)$ $3Ia^2$ and $Ia^2$ | $(3)$ $3Ia^2$ and $4Ia^2$  | $(4) 4Ia^2$ and $3Ia^2$          |
| Ans: | (1)                                                 |                          |                            |                                  |

Q.48 From a circular ring of mass 'M' and radius ' R' an arc corresponding to a 90° sector is removed. The moment of inertia of the remaining part of the ring about an axis passing through the centre of the ring and perpendicular to the plane of the ring is K' times ' MR<sup>2</sup>. Then the value of ' K ' is:

 $(1)\frac{3}{4}$ 

- $(2)\frac{7}{8}$
- $(3)\frac{1}{4}$
- $(4)\frac{1}{8}$

Ans: (1)

Sol:

Sol:

Q.49 Two conducting circular loops of radii  $R_1$  and  $R_2$  are placed in the same plane with their centers coinciding. If  $R_1 >> R_2$ , the mutual inductance M between them will be directly proportional to:

- $(1) \frac{R_1}{R_2}$
- $(2) \frac{R_2}{R_1}$
- (3)  $\frac{R_1^2}{R_2}$
- (4)  $\frac{R_2^2}{R_1}$

Ans: (4)

Sol:

Q.50 A particle moving in a circle of radius R with a uniform speed takes a time T to complete one revolution. If this particle were projected with the same speed at an angle ' $\theta$ ' to the horizontal, the maximum height attained by it equals 4R. The angel of projection,  $\theta$  is then given by:

(1)  $\theta = \cos^{-1} \left( \frac{gT^2}{\pi^2 R} \right)^{1/2}$ 

(2)  $\theta = \cos^{-1} \left( \frac{\pi^2 R}{gT^2} \right)^{1/2}$ 

(3)  $\theta = \sin^{-1} \left( \frac{\pi^2 R}{gT^2} \right)^{1/2}$ 

(4)  $\theta = \sin^{-1} \left( \frac{2gT^2}{\pi^2 R} \right)^{1/2}$ 

Ans: (4)

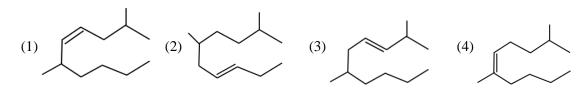
O.51 Given below are two statements:

Statement I:

Aspirin and Paracetamol belong to the class of narcotic analgesics.

Statement II:

Morphine and Heroin are non-narcotic analgesics.


In the light of the above statements, choose the correct answer from the options given below.

- (1) Both statement I and Statement II are true.
- (2) Both statement I and Statement II are false.
- (3) Statement I is correct but Statement II is false.
- (4) Statement I is incorrect but Statement II is true.

Ans: (2)

Sol:

Q.52 The correct structure of 2, 6-Dimethly-dec-4-ene is :



Ans: (1)

Sol:

- Q.53 BF<sub>3</sub> is planar and electron deficient compound. Hybridization and number of electrons around the central atom, respectively are:
  - $(1) \text{ sp}^3 \text{ and } 4$
- (2)  $sp^{3}$  and 6
- (3) sp<sup>2</sup> and 6
- $(4) \text{ sp}^2 \text{ and } 8$

Ans: (3)

Sol:

- Q.54 Noble gases are named because of their inertness toward reactively. Identify an incorrect statement about them.
  - (1) Noble gases are sparingly soluble in water
  - (2) Noble gases have very high melting and boiling points.
  - (3) Noble gases have weak dispersion forces.
  - (4) Noble gases have large positive values of electron gain enthalpy.

Ans: (2)

Sol:

Q.55 The molar conductance of NaCl, HCl and CH<sub>3</sub>COONa at infinite dilution are 126.45, 426.16 and 91.0 S cm<sup>2</sup> mol<sup>-1</sup> respectively. The molar conductance of CH<sub>3</sub>COOH at infinite dilution is.

Choose the right option for you answer.

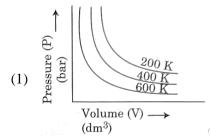
 $(1)\ 201.28\ S\ cm^{2}\ mol^{-1}\ (2)\ 390.71\ S\ cm^{2}\ mol^{-1}\ (3)\ 698.28\ S\ cm^{2}\ mol^{-1}\ (4)\ 540.48\ S\ cm^{2}\ mol^{-1}$ 

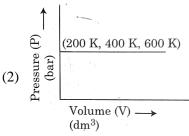
Ans: (2)

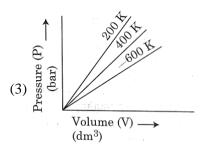
Sol:

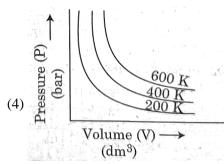
- Q.56 The right option for the statement "Tyndall effect is exhibited by" is:
  - (1) NaCl solution
- (2) Glucose solution
- (3) Starch solution
- (4) Urea solution

Ans: (3)


| Sol:<br>Q.57<br>Ans:<br>Sol: | The RBC deficiency is (1) Vitamin B <sub>12</sub> (1)                                                                                                                                                                      | deficiency disease of : (2) Vitamin B <sub>6</sub>                                                                                 | (3) Vitamin B <sub>1</sub>                               | (4) Vitamin B <sub>2</sub>                            |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------|
| Q.58 Ans: Sol:               | Dihedral angle of least (1) 120° (4)                                                                                                                                                                                       | stable conformer of ethat (2) 180°                                                                                                 | ane is: (3) 60°                                          | (4) 0°                                                |
| Q.59 Ans: Sol:               | <ul><li>(1) Actinoid contractio</li><li>(2) Most of the trivaler</li><li>(3) Lanthanoids are go</li></ul>                                                                                                                  | nt Lanthanoid ions are co<br>od conductors of heat an                                                                              | to element than Lanthand<br>olorless in the solid state. |                                                       |
| Q.60                         | The major product formation is ba                                                                                                                                                                                          | -                                                                                                                                  | tion reaction of 2 -Brom                                 | o pentane is Pent-2-ene. This                         |
| Ans:<br>Sol:                 | (1) Saytzeff's Rule<br>(1)                                                                                                                                                                                                 | (2) Hund's Rule                                                                                                                    | (3) Hofmann Rule                                         | (4) Huckel's Rule                                     |
| Q.61                         | one mole of ideal gas?                                                                                                                                                                                                     |                                                                                                                                    | t option for right relation (3) $C_P = RC_V$             | nship between $C_P$ and $C_V$ for<br>(4) $C_V = RC_P$ |
| Ans:<br>Sol:                 | (2)                                                                                                                                                                                                                        |                                                                                                                                    |                                                          |                                                       |
| Q.62                         |                                                                                                                                                                                                                            |                                                                                                                                    | ed by addition polymeris                                 |                                                       |
| Ans:<br>Sol:                 | (1) Teflon<br>(1)                                                                                                                                                                                                          | (2) Nylon-66                                                                                                                       | (3) Novolac                                              | (4) Dacron                                            |
| Q.63                         | What is the IUPAC nat<br>Acetone $\frac{(i) C_2H_5MgBr,d}{(ii)H_2O,H}$                                                                                                                                                     |                                                                                                                                    | ound formed in the follow                                | ving chemical reaction?                               |
|                              | (1) 2 -methyl propan-2                                                                                                                                                                                                     |                                                                                                                                    | (2) pentan-2-ol                                          | -1                                                    |
| Ans:<br>Sol:                 | (3) pentan-3-ol<br>(4)                                                                                                                                                                                                     |                                                                                                                                    | (4) 2 -methyl butan-2-0                                  | 01                                                    |
| Q.64                         | Match List - I with List<br>List-1<br>(a) PCl <sub>5</sub><br>(b) SF <sub>6</sub><br>(c) BrF <sub>5</sub><br>(d) BF <sub>3</sub><br>Choose the correct ans<br>(1) (a)-(iv), (b)-(iii), (c)<br>(3) (a)-(iii), (b)-(i), (c)- | List-II (i) Square pyramidal (ii) Trigonal planar (iii) Octahedral (iv) Trigonal bipyramioner from the options give)-(i), (d)-(ii) |                                                          |                                                       |


| Ans:<br>Sol: | (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |                                |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------|
| Q.65         | Which one of the follow temperature?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | wing methods can be use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ed to obtain highly pure r                                      | netal which is liquid at room  |
| Ans:<br>Sol: | <ul><li>(1) Electrolysis</li><li>(3)</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (2) Chromatography                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (3) Distillation                                                | (4) Zone refining              |
| Q.66         | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ne following chemical re $(C_6H_5CO)_2O_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | eaction is:                                                     |                                |
|              | $CH_3$ $CH - CH = CH$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\mathbf{H}_2 + \mathbf{H}\mathbf{B} \xrightarrow{\mathbf{r}} \stackrel{?}{\longrightarrow} ?$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                 |                                |
|              | $CH_3$ $CH - CH_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - CH <sub>2</sub> - Br                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $CH_3$ $CH - CH_2$                                              | $-CH_2-O-COC_6H_5$             |
|              | $(3)$ CH <sub>3</sub> CH - CH - $\downarrow$ Br                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $(4) \sum_{\text{CH}_3}^{\text{CH}_3} \text{CBr} - \text{CH}_2$ | – CH <sub>3</sub>              |
| Ans:<br>Sol: | (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |                                |
| Q.67         | Tritium, a radioactive i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | sotope of hydrogen, emi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ts which of the following                                       | particles ?                    |
| Ans:<br>Sol: | <ul><li>(1) Beta(β<sup>-</sup>)</li><li>(1)</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (2) Alpha ( $\alpha$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (3) Gamma(γ)                                                    | (4) Neutron (n)                |
| Q.68         | (1) $CH_3 - F < CH_3 - CH_3 -$ | f bond enthalpy of 'C – $Cl < CH_3 - Br < CH_3 - Cl > CH_3 - Br > CH_3 - Cl >$ | - I<br>- I<br>- I                                               |                                |
| Ans:<br>Sol: | (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |                                |
| Q.69         | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                                               | conal primitive unit cell are: |
| Ans:<br>Sol: | (1) 8,4<br>(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (2) 6,12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (3) 2,1                                                         | (4) 12,6                       |
| Q.70         | Which of the following                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | reactions is the metal d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | isplacement reaction? Cl                                        | noose the right option.        |


 $\begin{array}{c} \text{(1) 2KClO}_3 \xrightarrow{\Delta} \text{2KCl} + 3\text{O}_2\text{(2) Cr}_2\text{O}_3 + 2\text{Al} \xrightarrow{\Delta} \text{Al}_2\text{O}_3 + 2\text{Cr} \\ \text{(3) Fe} + 2\text{HCl} \rightarrow \text{FeCl}_2 + \text{H}_2 \uparrow \text{(4) 2 Pb(NO}_3)_2 \rightarrow 2\text{PbO} + 4\text{NO}_2 + \text{O}_2 \uparrow \\ \end{array}$ 


Ans: (2)

Q.71 Choose the correct option for graphical representation of Boyle's law, which shows a graph of pressure vs. volume of a gas at different temperatures:









Ans: (4)

Sol:

Q.72 The  $pK_b$  of dimethylamine and  $pK_a$  of acetic acid are 3.27 and 4.77 respectively at T(K). The correct option for the pH of dimethylammonium acetate solution is:

- (1) 8.50
- (2) 5.50
- (3)7.75
- (4)6.25

Ans: (3)

Sol:

Q.73 Among the following alkaline earth metal halides, one which is covalent and soluble in organic solvents is:`

- (1) Calcium chloride
- (2) Strontium chloride (3) Magnesium chloride (4) Beryllium chloride

Ans: (4)

Sol:

O.74 The maximum temperature that can be achieved in blast furnace is:

- (1) upto 1200 K
- (2) upto 2200 K
- (3) upto 1900 K
- (4) upto 5000 K

Ans: (2)

Sol:

Ethylene diaminetetraacetate (EDTA) ion is: Q.75

- (1) Hexadentate ligand with four " 0" and two "N" donor atoms
- (2) Unidentate ligand
- (3) Bidentate ligand with two " N " donor atoms
- (4) Tridentate ligand with three "N" donor atoms

Ans: (1)

Sol:

The following solutions were prepared by dissolving 10 g of glucose (C<sub>6</sub>H<sub>12</sub>O<sub>6</sub>) in 250ml of Q.76 water  $(P_1)$  10 g of urea  $(CH_4 N_2 0)$  in 250ml of water  $(P_2)$  and 10 g of sucrose  $(C_{12}H_{22}O_{11})$  in 250ml of water (P<sub>3</sub>). The right option for the decreasing order of osmotic pressure of these solutions

- (1)  $P_2 > P_1 > P_3$  (2)  $P_1 > P_2 > P_3$  (3)  $P_2 > P_3 > P_1$  (4)  $P_3 > P_1 > P_2$

Ans: (1)

Sol:

## Q.77 Statement I:

Acid strength increases in the order given as HF << HCl << HBr << HI

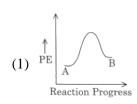
### **Statement II:**

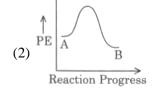
As the size of the elements F, Cl, Br, I increases down the group, the bond strength of HF, HCl, HBr and HI decreases and so the acid strength increases.

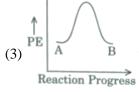
In the light of the above statements, choose the correct answer from the options given below.

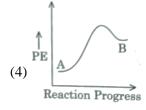
- (1) Both **Statement I** and **Statement II** are true.
- (2) Both Statement I and Statement II are false.
- (3) **Statement I** is correct but **Statement II** is false.
- (4) **Statement I** is incorrect but **Statement II** is true.

Ans: (1)


Sol:


- Q.78 The structures of beryllium chloride in solid state and vapour phase, are:
  - (1) Chain and dimer, respectively
- (2) Linear in both
- (3) Dimer and Linear, respectively
- (4) Chain in both


Ans: (1)


Sol:

Q.79 For a reaction  $A \rightarrow B$ , enthalpy of reaction is  $-4.2 \text{ kJ mol}^{-1}$  and enthalpy of activation is  $9.6 \text{ kJ mol}^{-1}$ . The correct potential energy profile for the reaction is shown in option.









Ans: (2)

Sol:

- Q.80 Zr(Z = 40) and Hf(Z = 72) have similar atomic and ionic radii because of :
  - (1) belonging to same group
- (2) diagonal relationship

(3) lanthanoid contraction

(4) having similar chemical properties

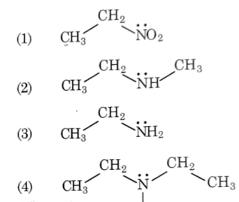
Ans: (3)

Sol:

- Q.81 A particular station of All India Radio, New Delhi, broadcasts on a frequency of 1,368kHz (kilohertz). The wavelength of the electromagnetic radiation emitted by the transmitter is : [speed of light,  $c = 3.0 \times 10^8 \text{ ms}^{-1}$ ]
  - (1) 219.3 m
- (2) 219.2 m
- (3) 2192 m
- (4) 21.92 cm

Ans: (1)

| Q.82 |        | ,                   | by wt.) carbon and remain fthis compound is: [Atom | • • •               | • |
|------|--------|---------------------|----------------------------------------------------|---------------------|---|
|      | (1) CH | (2) CH <sub>2</sub> | (3) CH <sub>3</sub>                                | (4) CH <sub>4</sub> | - |


Ans: Sol: (3)

Q.83 The compound which shows metamerism is:

(1)  $C_5H_{12}$  (2)  $C_3H_8O$  (3)  $C_3H_6O$  (4)  $C_4H_{10}O$ 

Ans: Sol:

Q.84 Identify the compound that will react with Hinsberg's reagent to give a solid which dissolves in alkali.



Ans: (3)

Sol:

Q.85 The correct option for the number of body centred unit cells in all 14 types of Bravais lattice unit cells is:

**Section-B (Chemistry)** 

(1) 7 (2) 5 (3) 2 (4) 3

Ans: (4)

Sol:

Q.86 Match List - I with List - II.

Choose the **correct** answer from the options given below.

(1) (a)-(iv), (b)-(ii), (c)-(i), (d)-(iii) (2) (a)-(ii), (b)-(iv), (c)-(iii), (d)-(i) (3) (a)-(i), (b)-(iii), (c)-(iv), (d)-(ii) (4) (a)-(iv), (b)-(i), (c)-(ii), (d)-(iii)

Ans: (4)

Q.87 Choose the correct option for the total pressure (in atm.) in a mixture of 4 g O2 and 2 g H2 confined in a total volume of one litre at 0°C is:

[Given R = 0.082 L atm mol<sup>-1</sup> K<sup>-1</sup>, T = 273 K]

- (1) 2.518
- (2) 2.602
- (3) 25.18
- (4) 26.02

(3) Ans:

Sol:

 $CH_3CH_2COO\text{-}Na^+ \xrightarrow{\quad NaOH, \ +\ ?\quad } CH_3CH_3 + Na_2CO_3.$ Q.88

Consider the above reaction and identify the missing reagent/Chemical.

- $(1) B_2H_6$
- (2) Red Phosphorus
- (3) CaO
- (4) DIBAL-H

Ans: (3)

Sol:

Q.89 For irreversible expansion of an ideal gas under isothermal condition, the correct option is

- $(1) \ \Delta U = 0, \ \Delta S_{total} = 0 \qquad (2) \ \Delta U \neq 0, \ \Delta S_{total} \neq 0 \qquad (3) \ \Delta U = 0, \ \Delta S_{total} \neq 0 \qquad (4) \ \Delta U \neq 0, \ \Delta S_{total} = 0$

Ans:

Sol:

Q.90 In which one of the following arrangements the given sequence is not strictly according to the properties indicated against it?

(1) HF < HCl < HBr < HI

- : Increasing acidic strength
- (2)  $H_2O < H_2S < H_2Se < H_2Te$
- : increasing pK<sub>a</sub> values
- (3)  $NH_3 < PH_3 < AsH_3 < PbO_2$
- : Increasing acidic character : Increasing oxidizing power

(4)  $CO_2 < SiO_2 < SnO_2 < PbO_2$ 

Ans: (2)

Sol:

The molar conductivity of 0.007 M acetic acid is 20 S cm<sup>2</sup> mol<sup>-1</sup>. What is the dissociation constant Q.91 of acetic acid? Choose the correct option.

$$\begin{bmatrix} \Lambda_{H^+}^\circ = 350 \ S \ cm^2 mol^{-1} \\ \Lambda_{CH_3COO^-}^\circ = 50 \ S \ cm^2 mol^{-1} \end{bmatrix}$$

(1) 
$$1.75 \times 10^{-4} \text{ mol L}^{-1}$$
 (2)  $2.50 \times 10^{-4} \text{ mol L}^{-1}$  (3)  $1.75 \times 10^{-5} \text{ mol L}^{-1}$  (4)  $2.50 \times 10^{-5} \text{ mol L}^{-1}$ 

Ans:

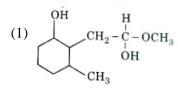
Sol:

The slope of Arrhenius Plot  $\left(\ln kv/s\frac{1}{T}\right)$  of first order reaction is  $-5 \times 10^3$  K. The value of  $E_a$  of Q.92 the reaction is. Choose the correct option for your answer.

[Given R = 8.314]K<sup>-1</sup> mol<sup>-1</sup>]

- $(1) 41.5 \text{kdmol}^{-1}$
- (2)  $83.0 \text{ kJ mol}^{-1}$  (3)  $166 \text{ kJ mol}^{-1}$  (4)  $-83 \text{ kJ mol}^{-1}$

(4) Ans:


Sol:

Q.93 The Product formed in the following chemical reaction is:

$$CH_{2} - C - OCH_{3}$$

$$CH_{3} \xrightarrow{NaBH_{4}}$$

$$C_{2}H_{5}OH$$



(2) 
$$CH_2-CH_2-OH$$
  $CH_3$ 

$$(3) \qquad \begin{array}{c} OH & H \\ CH_2 - C - CH_3 \\ OH \end{array}$$

(4) 
$$\begin{array}{c} OH \\ CH_2 - C - OCH_3 \end{array}$$

List - II

Ans: (1)

Sol:

Q.94 Match List - I with List - II.

List - I

(i) Hell-Volhard-Zelinsky reaction

$$\begin{array}{c}
\mathbf{R} - \mathbf{C} - \mathbf{C}\mathbf{H}_3 + \\
\mathbf{NaOX} \longrightarrow
\end{array}$$

(ii) Gattermann-Koch reaction

$$\begin{array}{c} \text{R-CH}_2\text{-OH} \\ + \text{R'COOH} \\ \underline{\qquad \quad \text{Conc. H}_2\text{SO}_4} \end{array}$$

(iii) Haloform reaction

$$(d) \xrightarrow{\text{(i) } X_2/\text{Red P} \atop \text{(ii) } H_2O}$$

(iv) Esterification

Choose the correct answer from the options given below.

- (1) (a)-(iv), (b)-(i), (c)-(ii), (d)-(iii)
- (2) (a)-(iii), (b)-(ii), (c)-(i), (d)-(iv)
- (3) (a)-(i), (b)-(iv), (c)-(iii), (d)-(ii)
- (4) (a)-(ii), (b)-(iii), (c)-(iv), (d)-(i)

Ans: (1)

Sol:

- Q.95 Which of the following molecules is non-polar in nature?
  - (1) POCl<sub>3</sub>
- $(2) CH_2O$
- (3) SbCl<sub>5</sub>
- $(4) NO_2$

Ans: (3)

Sol:

- Q.96 From the following pairs of ions which one is not an iso-electronic pair?
  - $(1) 0^{2-}, F^{-}$
- $(2) \text{ Na}^+, \text{Mg}^{2+}$
- $(3) \text{ Mn}^{2+}, \text{Fe}^{3+}$
- $(4) \text{ Fe}^{2+}, \text{Mn}^{2+}$

Ans: (4)

Sol:

Q.97 The correct option for the value of vapour pressure of a solution at 45°C with benzene to octane in molar ratio 3: 2 is :

[At 45°C vapour pressure of benzene is 280 mmHg and that of octane is 420 mmHg. Assume Ideal gas]

- (1) 160 mm of Hg
- (2) 168 mm of Hg
- (3) 336 mm of Hg
- (4) 350 mm of Hg

Ans: (3)

Q.98 Match List-I with List - II.

$$List - I$$

List - II

- (a)  $2SO_2(g) + O_2(g) \rightarrow 2SO_3(g)$
- (i) Acid rain
- (b)  $HOCl(g) \xrightarrow{hv} \dot{O}H + \dot{C}l(ii)$  Smog
- (c)  $CaCO_3 + H_2SO_4 \rightarrow CaSO_4 + H_2O + CO_2$
- (iii) Ozone depletion
- (d)  $NO_2(g) \xrightarrow{hv} NO(g) + O(g)$
- (iv) Tropospheric pollution

Choose the correct answer from the options given below.

- (1) (a)-(i), (b)-(ii), (c)-(iii), (d)-(iv)
- (2) (a)-(ii), (b)-(iii), (c)-(iv), (d)-(i)
- (3) (a)-(iv), (b)-(iii), (c)-(i), (d)-(ii)
- (4) (a)-(iii), (b)-(ii), (c)-(iv), (d)-(i)

Ans: (3)

Sol:

Q.99 The reagent 'R' in the given sequence of chemical reaction is:

$$\begin{array}{c} Br \\ \\ Br \\ \\ Br \end{array} \xrightarrow{NaNO_2,\ HCl} \begin{array}{c} Br \\ \\ Br \\ \\ Br \end{array} \xrightarrow{Br} \begin{array}{c} Br \\ \\ Br \\ \\ Br \end{array}$$

- (1) H<sub>2</sub>O
- (2) CH<sub>3</sub>CH<sub>2</sub>OH
- (3) HI
- (4) CuCN/KCN

Ans: (2)

Sol:

Q.100 The intermediate compound 'X' in the following chemical reaction is:

$$CH_3 \xrightarrow{CCO_2Cl_2} X \xrightarrow{H_3O^+} X \xrightarrow{H_3O^+}$$

$$(1) \qquad \qquad \text{CH(OCroHCl}_{2})_{2} \qquad \qquad \text{CH(OCOCH}_{3})_{2} \qquad \qquad \text{CH} \qquad \qquad \text{Cl} \qquad \qquad \text{CH} \qquad \qquad \text{CH$$

Ans:

(1)

### **Section-A (Biology: Botany)**

- Q.101 Inspite of interspecific competition in nature, which mechanism the competing species might have evolved for their survival?
  - (1) Resource partitioning

(2) Competitive release

(3) Mutualism

(4) Predation

Ans: (1)

Sol:

Q.102 Match List-I with List - II.

| List-I                                                        | List-II                  |
|---------------------------------------------------------------|--------------------------|
| (a) Cells with active cell division capacity                  | (i) Vascular tissues     |
| (b) Tissue having all cells similar in structure and function | (ii) Meristematic tissue |
| (c) Tissue having different types of cells                    | (iii) Sclereids          |
| (d) Dead cells with highly thickened walls and narrow lumen   | (iv) Simple tissue       |

Select the correct answer from the options given below.

(a)

(b)

(c)

(1) (ii) (2)

(iv)

(i)

(iv) (i)

(iii) (ii)

(iii)

(iii) (4)

(3)

(ii) (ii)

(iv) (iv) (i)

(d)

(iii)

(i)

Ans: (1)

Sol:

- Q.103 During the purification process for recombinant DNA technology, addition of chilled ethanol precipitates out:
  - (1) RNA
- (2) DNA
- (3) Histones
- (4) Polysaccharides

(2) Ans:

Sol:

Q.104 Match List-I with List-II

| List-I |                 | List-l | I                                       |
|--------|-----------------|--------|-----------------------------------------|
| (a)    | Cohesion        | (i)    | More attraction in liquid phase         |
| (b)    | Adhesion        | (ii)   | Mutual attraction among water molecules |
| (c)    | Surface tension | (iii)  | Water loss in liquid phase              |
| (d)    | Guttation       | (iv)   | Attraction towards polar surface        |

(d)

(iii)

(i)

(ii)

(iii)

Choose the correct answer from the options given below.

(a) (ii)

(iv)

(c)

(b)

(iv)

(iii)

(i)

(i)

(i)

(ii)

(3) (iii)

(iv) (iv)

(4) (ii)

Ans: Sol:

(1)

(1)

(2)

The term used for transfer of pollen grains from anthers of one plant to stigma of a different plant which, during pollination, brings genetically different types of pollen grains to stigma, is:

- (1) Xenogamy
- (2) Geitonogamy
- (3) Chasmogamy
- (4) Cleistogamy

Ans: (1)

| Sol:<br>Q.106   | Which of the following sta<br>(1) Metaphase I (2)                                                                       | ages of meiosis involv<br>2) Metaphase II           | es division of centromer (3) Anaphase II                                                                                      | e?<br>(4) Telophase II           |  |
|-----------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--|
| Ans:<br>Sol:    | (3)                                                                                                                     | •                                                   |                                                                                                                               | ., .                             |  |
| Q.107 Ans: Sol: | Which of the following is (1) Denaturation, Annealia (3) Extension, Denaturation (1)                                    | ng, Extension                                       | of steps in a PCR (Polymerase Chain Reaction)?  (2) Denaturation, Extension, Annealing (4) Annealing, Denaturation, Extension |                                  |  |
| Q.108           | Gemmae are present in: (1) Mosses (3) Some Gymnosperms                                                                  |                                                     | <ul><li>(2) Pteridophytes</li><li>(4) Some Liverworts</li></ul>                                                               |                                  |  |
| Ans:<br>Sol:    | (4)                                                                                                                     |                                                     | (4) Some Liverworts                                                                                                           |                                  |  |
| Q.109           | The production of game understood from a diagrar                                                                        |                                                     | ormation of zygotes, the                                                                                                      | e $F_1$ and $F_2$ plants, can be |  |
| Ans:<br>Sol:    | •                                                                                                                       | 2) Punch square                                     | (3) Punnett square                                                                                                            | (4) Net square                   |  |
| Q.110 Ans: Sol: | The factor that leads to Fo<br>(1) Natural selection<br>(3) Mutation<br>(4)                                             | ounder effect in popula                             | ation is:  (2) Genetic recombinat  (4) Genetic drift                                                                          | ion                              |  |
| Q.111           | Genera like Selaginella ar                                                                                              | nd <i>Salvinia</i> produce tw                       | o kinds of spores. Such                                                                                                       | plants are known as :            |  |
| Ans:<br>Sol:    | (1) Homosorus (2) (4)                                                                                                   | 2) Heterosorus                                      | (3) Homosporous                                                                                                               | (4) Heteroporous                 |  |
| Q.112           | Plants follow different pat<br>of structures. This ability                                                              |                                                     | environments or phases                                                                                                        | of life to form different kind   |  |
| Ans:<br>Sol:    | •                                                                                                                       | 2) Flexibility                                      | (3) Plasticity                                                                                                                | (4) Maturity                     |  |
| Q.113           | Which of the following ar (1) Morphine, codeine                                                                         | re not secondary metab                              | polites in plants ? (2) Amino acids, gluco                                                                                    | se                               |  |
| Ans:<br>Sol:    | (3) Vinblastin, curcumin (2)                                                                                            |                                                     | (4) Rubber, gums                                                                                                              | -                                |  |
| Q.114           | Complete the flow chart of $(a)$ $DNA \xrightarrow{(b)} mRNA$                                                           |                                                     |                                                                                                                               |                                  |  |
|                 | (1) (a)-Replication; (b)-Tr<br>(2) (a)-Translation; (b)-Re<br>(3) (a)-Replication; (b)-Tr<br>(4) (a)-Transduction; (b)- | eplication; (c)-Transcri<br>canscription; (c)-Trans | iption; (d)-Transduction lation; (d)-Protein                                                                                  |                                  |  |

| Ans:         | (3)       |                  |          |           |                   |                              |              |                       |
|--------------|-----------|------------------|----------|-----------|-------------------|------------------------------|--------------|-----------------------|
| Sol:         | Whe       | n the cent       | tromere  | ic citu   | ated in the mid   | dle of two equal arms of ch  | romosome     | es the chromosome     |
| Q.113        |           | erred as:        |          | . 15 SILU | ated in the find  | die of two equal arms of en  | HOIHOSOIH    | es, the emomosome     |
|              |           | Ietacentri       |          | (2)       | Telocentric       | (3) Sub-metacentric          | (4) Acro     | ocentric              |
| Ans:         | (1) $(1)$ | retuceriti       |          | (2)       | Terocentric       | (3) Suo metteentre           | (1) / 1010   | Scenare               |
| Sol:         | (-)       |                  |          |           |                   |                              |              |                       |
| 501.         |           |                  |          |           |                   |                              |              |                       |
| 0.116        | DNA       | strands o        | on a ge  | l staine  | d with ethidium   | bromide when viewed und      | er UV radi   | iation, appear as :   |
|              |           | ellow bar        | _        |           |                   | (2) Bright orange band       |              | , 11                  |
|              | (3) D     | ark red b        | ands     |           |                   | (4) Bright blue bands        |              |                       |
| Ans:         | (2)       |                  |          |           |                   |                              |              |                       |
| Sol:         |           |                  |          |           |                   |                              |              |                       |
|              |           |                  |          |           |                   |                              |              |                       |
| Q.117        | The s     | site of per      | ception  | n of ligl | nt in plants duri | ng photoperiodism is:        |              |                       |
|              | (1) S     | hoot apex        | ζ.       | (2)       | Stem              | (3) Axillary bud             | (4) Leaf     | f                     |
| Ans:         | (4)       |                  |          |           |                   |                              |              |                       |
| Sol:         |           |                  |          |           |                   |                              |              |                       |
|              |           |                  |          |           |                   |                              |              |                       |
| Q.118        |           | _                | -        |           | ving gene amp     | lification is attempted in a | ın individu  | ual's tissue to treat |
|              |           | ses, it is l     | known    |           |                   |                              |              |                       |
|              |           | iopiracy         |          | (2)       | Gene therapy      | (3) Molecular diagnos        | sis (4) Safe | ety testing           |
| Ans:         | (2)       |                  |          |           |                   |                              |              |                       |
| Sol:         |           |                  |          |           |                   |                              |              |                       |
| 0.110        | ****      | 1 6.1 (          | . 11     | 1         |                   | 0                            |              |                       |
| Q.119        |           |                  |          | ng plan   | ts is monoeciou   |                              |              |                       |
|              |           | 'arica pap<br>•  | •        | 1         |                   | (2) Chara                    |              |                       |
| Ana          |           | <i>larchanti</i> | a poiyn  | norpna    |                   | (4) Cycas circinalis         |              |                       |
| Ans:<br>Sol: | (2)       |                  |          |           |                   |                              |              |                       |
| 301.         |           |                  |          |           |                   |                              |              |                       |
| O 120        | Whic      | h of the f       | followi  | no is no  | nt an annlication | n of PCR (Polymerase Chair   | n Reaction   | ) ?                   |
| Q.120.       |           | Iolecular        |          | •         | t all application | (2) Gene amplification       |              | <i>,</i> .            |
|              | ` '       | urification      | _        |           | rotein            | (4) Detection of gene        |              |                       |
| Ans:         | (3)       | <b></b>          | 01 150   | race p    | 1000111           | (i) Detection of general     |              |                       |
| Sol:         | (-)       |                  |          |           |                   |                              |              |                       |
|              |           |                  |          |           |                   |                              |              |                       |
| Q.121        | Matc      | h List-I w       | vith Lis | st-II.    |                   |                              |              |                       |
|              | List-     | I                |          | List-I    | I                 |                              |              |                       |
|              | (a)       | Cristae          |          | (i)       | Primary const     | riction in chromosome        |              |                       |
|              | (b)       | Thylako          | oids     | (ii)      | · ·               | acs in Golgi apparatus       |              |                       |
|              | (c)       | Centron          |          | (iii)     | Infoldings in 1   | 0 11                         |              |                       |
|              | (d)       | Cisterna         | ae       | (iv)      |                   | nbranous sacs in stroma of p | olastids     |                       |
|              | Choo      | se the co        | rrect ar | nswer fi  | rom the options   | given below.                 |              |                       |
|              |           | (a)              | (b)      | (c)       | (d)               |                              |              |                       |
|              | (1)       | (iv)             | (iii)    | (ii)      | (i)               |                              |              |                       |

(2)

(3)

(i)

(iii)

(iv)

(iv)

(iii)

(i)

(ii)

(ii)

| Ans:<br>Sol: | (4)<br>(3)                      | (ii)      | (iii)         | (iv)        | (i)         |                      |           |          |                               |
|--------------|---------------------------------|-----------|---------------|-------------|-------------|----------------------|-----------|----------|-------------------------------|
| Q.122        | 2 Diadelphous stamens are found |           |               |             |             |                      |           |          |                               |
| Q.122        |                                 | ina rose  |               | (2) Ci      |             | (3) Pea              |           |          | (4) China rose and citrus     |
| Ans:         | (3)                             | ma rose   |               | (2) CI      | 11 (15)     | (3) 1 64             |           |          | (1) China 1050 and Citras     |
| Sol:         | (3)                             |           |               |             |             |                      |           |          |                               |
| 201.         |                                 |           |               |             |             |                      |           |          |                               |
| Q.123        | Match                           | List-I w  | ith List      | -II.        |             |                      |           |          |                               |
| <b>C</b>     | List-                           |           |               |             | List-       | II                   |           |          |                               |
|              | (a)                             | Protor    | olast fusi    | ion         | (i)         | Totipotency          |           |          |                               |
|              | (b)                             |           | tissue cu     |             | (ii)        | Pomato               |           |          |                               |
|              | (c)                             |           | tem cult      |             | (iii)       | Somaclones           |           |          |                               |
|              | (d)                             | -         | propaga       |             | (iv)        | Virus free plants    |           |          |                               |
|              | ` '                             |           |               |             |             | otions given below.  |           |          |                               |
|              | CHOOS                           | (a)       | (b)           | (c)         | (d)         | dions given below.   |           |          |                               |
|              | (1)                             | (iii)     | (iv)          | (ii)        | (i)         |                      |           |          |                               |
|              | (2)                             | (ii)      |               |             | (iii)       |                      |           |          |                               |
|              | (3)                             | (iii)     | (i)           | (iv)        |             |                      |           |          |                               |
|              | (4)                             | (iv)      | (iv)<br>(iii) | (i)<br>(ii) | (ii)<br>(i) |                      |           |          |                               |
| Ans:         | (2)                             | (1V)      | (111)         | (11)        | (1)         |                      |           |          |                               |
| Sol:         | (2)                             |           |               |             |             |                      |           |          |                               |
| 501.         |                                 |           |               |             |             |                      |           |          |                               |
| Q.124        | Δmens                           | ealiem c  | an he re      | presente    | dae ·       |                      |           |          |                               |
| Q.124        |                                 |           |               | ecies B (   |             | (2) Spec             | ias A (   | ) · Spec | cies B (+)                    |
|              | _                               |           | _             | ecies B     |             | _                    |           | _        | cies B (0)                    |
| Ans:         | $(3)$ $3\mathbf{p}$ $(1)$       | ecies A   | (–) , sp      | ecies b     | (-)         | (4) Spec             | ics A (+  | , spec   | les D (0)                     |
| Sol:         | (1)                             |           |               |             |             |                      |           |          |                               |
| 301.         |                                 |           |               |             |             |                      |           |          |                               |
| O 125        | Which                           | of the f  | followin      | a ic an ir  | ocorrect    | statement ?          |           |          |                               |
| Q.123        |                                 |           |               | _           |             |                      | niclens a | and usus | al cytoplasmic organelles.    |
|              | . ,                             |           |               |             | •           | ant and animal cells |           | ina usua | ar cytopiasinic organicies.   |
|              |                                 |           |               |             |             |                      |           | nresent  | inside the nucleus and that   |
|              |                                 | the cyto  | _             | acc Ioiii   | ns a oa     | inci between the n   | aterrars  | present  | . miside the nucleus and that |
|              |                                 | -         | _             | as nas      | sages f     | or proteins and RI   | NA mol    | ecules   | in both directions between    |
|              |                                 | cleus an  |               | _           | suges 1     | or proteins and re   | 171 11101 | ccurcs   | in both directions between    |
| Ans:         | (1)                             | cicus an  | d Cytopi      | asiii.      |             |                      |           |          |                               |
| Sol:         | (1)                             |           |               |             |             |                      |           |          |                               |
| 501.         |                                 |           |               |             |             |                      |           |          |                               |
| O 126        | A typi                          | cal anoi  | osperm (      | embryo      | sac at m    | naturity is :        |           |          |                               |
| Q.120        |                                 | ucleate   | -             | -           | oue at II   | (2) 7-nu             | cleate ai | nd 8-cel | lled                          |
|              |                                 | ucleate   |               |             |             | (4) 8-nu             |           |          |                               |
| Ans:         | (1)                             | iacicaic  | una / ev      | ciica       |             | (1) 0 114            | cicate ai | id o cei |                               |
| Sol:         | (1)                             |           |               |             |             |                      |           |          |                               |
| 501.         |                                 |           |               |             |             |                      |           |          |                               |
| Q.127        | Which                           | of the f  | followin      | g algae c   | ontains     | mannitol as reserv   | e food n  | naterial | ?                             |
| ~·/          |                                 | tocarpus  |               |             | acilaria    |                      |           |          | (4) Ulothrix                  |
| Ans:         | (1) L <sub>3</sub>              | . starpus |               | (2) 31      |             | (5) (5)              | J         |          | (., 0.00                      |
| Sol:         |                                 |           |               |             |             |                      |           |          |                               |

| Q.128    | 8 The plant hormone used to destroy weeds in a field is: |                         |                     |                  |                          |                               |  |
|----------|----------------------------------------------------------|-------------------------|---------------------|------------------|--------------------------|-------------------------------|--|
|          | (1) IA                                                   | AA (2                   | ) NAA               |                  | (3) 2, 4-D               | (4) IBA                       |  |
| Ans:     | (3)                                                      |                         |                     |                  |                          |                               |  |
| Sol:     |                                                          |                         |                     |                  |                          |                               |  |
| Q.129    |                                                          |                         | such as             | carbon nitroge   | en phosphorus and calciu | im present in the soil at any |  |
|          | -                                                        | time, is referred as:   | ) C1:               | •.               | (2) (2) 11               | (A) Q: 1'                     |  |
| <b>A</b> |                                                          | limax (2                | ) Clima             | ax community     | (3) Standing state       | (4) Standing crop             |  |
| Ans:     | (3)                                                      |                         |                     |                  |                          |                               |  |
| Sol:     |                                                          |                         |                     |                  |                          |                               |  |
| O 130    | Muta                                                     | tions in plant cells ca | n he ind            | duced by ·       |                          |                               |  |
| Q.130    |                                                          | -                       |                     | red rays         | (3) Gamma rays           | (4) Zeatin                    |  |
| Ans:     | (3)                                                      | (=                      | ,                   | ou ruj s         | (e) cummuraje            | (1) 2000                      |  |
| Sol:     | (- )                                                     |                         |                     |                  |                          |                               |  |
|          |                                                          |                         |                     |                  |                          |                               |  |
| Q.131    | Whic                                                     | h of the following sta  | tement              | s is not correct | ?                        |                               |  |
|          | (1) P                                                    | yramid of biomass in    | sea is g            | generally inver  | ted.                     |                               |  |
|          | (2) P                                                    | yramid of biomass in    | sea is g            | generally uprig  | ht.                      |                               |  |
|          | (3) P                                                    | yramid of energy is al  | lways u             | pright.          |                          |                               |  |
|          | (4) P                                                    | yramid of numbers in    | a grass             | sland ecosyster  | n is upright.            |                               |  |
| Ans:     | (2)                                                      |                         |                     |                  |                          |                               |  |
| Sol:     |                                                          |                         |                     |                  |                          |                               |  |
|          |                                                          |                         |                     |                  |                          |                               |  |
| Q.132    |                                                          | e equation $GPP-R = N$  |                     | -                |                          |                               |  |
|          |                                                          | adiant energy (2        | ) Retar             | dation factor    | (3) Environment factor   | (4) Respiration losses        |  |
| Ans:     | (4)                                                      |                         |                     |                  |                          |                               |  |
| Sol:     |                                                          |                         |                     |                  |                          |                               |  |
| 0.100    | *****                                                    | 1 64 611 : 1            |                     | 1 0              | 9                        |                               |  |
| Q.133    |                                                          | h of the following alg  | -                   | _                |                          | (4) D1 1                      |  |
| <b>A</b> |                                                          | reen algae (2           | ) Red a             | iigae            | (3) Red algae            | (4) Blue-green algae          |  |
| Ans:     | (3)                                                      |                         |                     |                  |                          |                               |  |
| Sol:     |                                                          |                         |                     |                  |                          |                               |  |
| Q.134    | The f                                                    | irst stable product of  | CO <sub>2</sub> fix | vation in corah  | um ic :                  |                               |  |
| Q.134    |                                                          | _                       |                     | nacetic acid     | (3) Succinic acid        | (4) Phosphoglyceric acid      |  |
| Ans:     | (2)                                                      | )14116 4614 (2          | ) Onur              | saccife acid     | (5) Succime ucia         | (1) I nospinogrycerie ucia    |  |
| Sol:     | (2)                                                      |                         |                     |                  |                          |                               |  |
|          |                                                          |                         |                     |                  |                          |                               |  |
| Q.135    | Matc                                                     | h List-I with List-II.  |                     |                  |                          |                               |  |
|          |                                                          | List-I                  | List-I              | I                |                          |                               |  |
|          | (a)                                                      | Lenticels               | (i)                 | Phellogen        |                          |                               |  |
|          | (b)                                                      | Cork cambium            | (ii)                | Suberin depo     | sition                   |                               |  |
| ľ        | (c)                                                      | Secondary cortex        | (iii)               | Exchange of      |                          |                               |  |
| ļ        | (d)                                                      | Cork                    | (iv)                | Phelloderm       |                          |                               |  |
| ·        | Choo                                                     | se the correct answer   | from t              | he options give  | en below.                |                               |  |
|          |                                                          | (a) (b) (c              | )                   | (d)              |                          |                               |  |

(ii)

(ii)

(1)

(2)

(iv)

(iii)

(i)

(i)

(iii)

(iv)

- (3) (ii) (iii) (iv) (i) (4) (iv) (ii) (i) (iii)
- Ans: (2)

Sol:

## **Section-B (Biology: Botany)**

- Q.136 Which of the following statements is incorrect?
  - (1) During aerobic respiration, role of oxygen is limited to the terminal stage.
  - (2) In ETC (Electron Transport Chain), one molecular of NADH + H<sup>+</sup> gives rise to 2-ATP molecules, and one FADH<sub>2</sub> gives rise to 3 ATP molecules.
  - (3) ATP is synthesized through complex V.
  - (4) Oxidation-reduction reactions produce proton gradient in respiration.

Ans: (2)

Sol:

### Q.137 Match Column -I with Column-II

|     | List-I                                                                                                                                                              | List-II |              |  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------|--|
| (a) | $\% \ \mathbf{Q}^{7} \mathbf{K}_{(5)} \ \mathbf{C}_{1+2+(2)} \ \mathbf{A}_{(9)+1} \ \mathbf{G}_{1}$                                                                 | (i)     | Brassicaceae |  |
| (b) | $\oplus Q^{7}K_{(5)}\widehat{C_{(5)}A_{5}}\underline{C_{(2)}}$                                                                                                      | (ii)    | Liliaceae    |  |
| (c) | $\bigoplus \widehat{\operatorname{P}_{\scriptscriptstyle{(3+3)}}} \widehat{\operatorname{A}_{\scriptscriptstyle{3+3}}}  \operatorname{G}_{\scriptscriptstyle{(3)}}$ | (iii)   | Fabaceae     |  |
| (d) | $\oplus \vec{Q}' K_{2+2}C_4A_{2-4}\underline{G}_{(2)}$                                                                                                              | (iv)    | Solanaceae   |  |

Choose the correct answer from the options given below.

(d) (a) (b) (c) (1) (iii) (iv) (ii) (i) (iii) (iv) (2) (i) (ii) (3) (ii) (iii) (iv) (i) (4) (iv) (ii) (i) (iii)

Ans: (1)

Sol:

### Q.138 Match List-I with List-II.

|     | List - I             |       | List - II                                                  |
|-----|----------------------|-------|------------------------------------------------------------|
| (a) | S phase              | (i)   | Proteins are synthesized                                   |
| (b) | G <sub>2</sub> phase | (ii)  | Inactive phase                                             |
| (c) | Quiescent stage      | (iii) | Interval between mitosis and initiation of DNA replication |
| (d) | G <sub>1</sub> phase | (iv)  | DNA replication                                            |

Choose the correct answer from the options given below.

(a) (b) (c) (d) (1) (iii) (ii) (i) (iv) (2) (iv) (ii) (iii) (i) (3) (iv) (ii) (iii) (i) (iv) (4) (ii) (iii) (i)

Ans: (3)

Sol:

Q.139 Plasmid pBR322 has PstI restriction enzyme site within gene amp<sup>R</sup> that confers ampicillin resistance. If this enzyme is used for inserting a gene for  $\beta$ -galactoside production and the recombinant plasmid is inserted in an E.coli strain

| Ans:            | <ul><li>(3) it will lead to lysis of host cell.</li><li>(4) it will be able to produce a novel protein wit</li><li>(1)</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                               | h dual ability.                                                                                                |  |  |  |  |  |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Sol:            | (-)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                |  |  |  |  |  |
| Q.140           | Identify the correct statement.  (1) In capping, methyl guanosine triphosphate is (2) RNA polymerase binds with Rho factor to te (3) The coding strand in a transcription unit is c (4) Split gene arrangement is characteristic of pro-                                                                                                                                                                                                                                                                                                                       | erminate the process of transcription in bacteria. opied to an mRNA.                                           |  |  |  |  |  |
| Ans:<br>Sol:    | (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                |  |  |  |  |  |
| Q.141<br>Ans:   | Now a days it is possible to detect the mutated gene causing cancer by allowing radioactive probe to hybridise its complimentary DNA in a clone of cells, followed by its detection using autoradiography because:  (1) mutated gene partially appears on a photographic film.  (2) mutated gene completely and clearly appears on a photographic film.  (3) mutated gene does not appear on a photographic film as the probe has no complimentarity with it.  (4) mutated gene does not appear on photographic film as the probe has complimentarity with it. |                                                                                                                |  |  |  |  |  |
| Sol:            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |  |  |  |  |  |
| Q.142           | <ul><li>(1) The base of number logarithms</li><li>(3) The base of natural logarithms</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | represents: (2) The base of exponential logarithms (4) The base of geometric logarithms                        |  |  |  |  |  |
| Ans:<br>Sol:    | (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                |  |  |  |  |  |
| Q.143 Ans: Sol: | <ul><li>(1) Large colorless empty cells in the epidermis</li><li>(2) In dicot leaves, vascular bundles are surroun</li><li>(3) Cells of medullary rays that form part of car</li></ul>                                                                                                                                                                                                                                                                                                                                                                         | ded by large thick-walled cells - Conjunctive tissue                                                           |  |  |  |  |  |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |  |  |  |  |  |
| Q.144           | In some members of which of the following pa<br>months after release?<br>(1) Poaceae; Rosaceae                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | irs of families, pollen grains retain their viability for  (2) Poaceae; Leguminosae                            |  |  |  |  |  |
| Ans:<br>Sol:    | <ul><li>(3) Poaceae; Solanaceae</li><li>(4)</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (4) Rosaceae; Leguminosae                                                                                      |  |  |  |  |  |
| Q.145           | What is the role of RNA polymerase III in the p (1) Transcribes rRNAs (28S, 18S and 5.8S) (3) Transcribes precursor of mRNA                                                                                                                                                                                                                                                                                                                                                                                                                                    | rocess of transcription in eukaryotes ?  (2) Transcribes tRNA, 5 s rRNA and snRNA  (4) Transcribes only snRNAs |  |  |  |  |  |
| Ans:<br>Sol:    | (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ( )                                                                                                            |  |  |  |  |  |
| Q.146           | Which of the following statements is incorrect?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |  |  |  |  |  |

(1) it will not be able to confer ampicillin resistance to the host cell.

(2) the transformed cells will have the ability to resist ampicillin as well as produce  $\beta$ -galactoside.

- (1) Both ATP and NADPH + H<sup>+</sup> are synthesized during non-cyclic photophosphorylation.
- (2) Stroma lamellae have PS I only and lack NADP reductase.
- (3) Grana lamellae have both PS I and PS II.
- (4) Cyclic photophosphorylation involves both PS I and PS II.

Ans: (4)

Sol:

- Q.147 Which of the following statements is correct?
  - (1) Fusion of two cells is called Karyogamy.
  - (2) Fusion of protoplasms between two motile on non-motile gametes is called plasmogamy.
  - (3) Organisms that depend on living plants are called saprophytes.
  - (4) Some of the organisms can fix atmospheric nitrogen in specialized cells called sheath cells.

Ans: (2)

Sol:

#### Q.148 Match List-I with List-II

|     | List-I                 | List-II |                      |  |
|-----|------------------------|---------|----------------------|--|
| (a) | Protein                | (i)     | C = C double bonds   |  |
| (b) | Unsaturated fatty acid | (ii)    | Phosphodiester bonds |  |
| (c) | Nucleic acid           | (iii)   | Glycosidic bonds     |  |
| (d) | Polysaccharide         | (iv)    | Peptide bonds        |  |

Choose the correct answer from the options given below.

(a) (b) (c) (d) (iv) (i) (ii) (iii)

(2) (i) (iv) (iii) (ii) (3) (ii) (i) (iv) (iii)

**(4)** (iv) (iii) (i) (ii)

Ans: (1)

(1)

Sol:

Q.149 DNA fingerprinting involves identifying differences in some specific regions in DNA sequence, called as:

(1) Satellite DNA

(2) Repetitive DNA

(3) Single nucleotides (4) Polymorphic DNA

Ans: (2)

Sol:

### O.150 Match Column-I with Column - II.

| (   | Column - I   |       | Column - II                                   |
|-----|--------------|-------|-----------------------------------------------|
| (a) | Nitrococcus  | (i)   | Denitrification                               |
| (b) | Rhizobium    | (ii)  | Conversion of ammonia to nitrite              |
| (c) | Thiobacillus | (iii) | Conversion of nitrite to nitrate              |
| (d) | Nitrobacter  | (iv)  | Conversion of atmospheric nitrogen to ammonia |

Choose the correct answer from options given below.

(a) (b) (c) (d)

(iii) (1) (ii) (iv) (i)

(2) (i) (ii) (iii) (iv) (3) (iii) (i) (iv) (ii)

(4) (iv) (iii) (ii) (i) (1)

Ans: Sol:

| Q.151        | A specific recognition the DNA is:                                                                                                                                                                                                                                                                                                                                                                                                   | sequence identified by en | adonucleases to make cuts at specific position with in                     |                           |  |  |  |  |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------------------------------------------------------------|---------------------------|--|--|--|--|
|              | <ul><li>(1) Degenerate primer</li><li>(3) Palindromic Nucleo</li></ul>                                                                                                                                                                                                                                                                                                                                                               | -                         | <ul><li>(2) Okazaki sequences</li><li>(4) Poly(A) tail sequences</li></ul> |                           |  |  |  |  |
| Ans:<br>Sol: | (3)                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           |                                                                            |                           |  |  |  |  |
| Q.152        | The fruit fly has 8 chromosomes (2n) in each cell. During interphase of Mitosis if the number of chromosomes at $G_1$ phase is 8, what would be the number of chromosomes after S phase?                                                                                                                                                                                                                                             |                           |                                                                            |                           |  |  |  |  |
| Ans:<br>Sol: | (1) 8<br>(1)                                                                                                                                                                                                                                                                                                                                                                                                                         | (2) 16                    | (3) 4                                                                      | (4) 32                    |  |  |  |  |
| Q.153        |                                                                                                                                                                                                                                                                                                                                                                                                                                      | wing belongs to the fami  | *                                                                          |                           |  |  |  |  |
| Ans:<br>Sol: | <ul><li>(1) Fire fly</li><li>(4)</li></ul>                                                                                                                                                                                                                                                                                                                                                                                           | (2) Grasshopper           | (3) Cockroach                                                              | (4) House fly             |  |  |  |  |
| Q.154        | Succus entericus is refe                                                                                                                                                                                                                                                                                                                                                                                                             |                           | 0.5                                                                        | (1) 9                     |  |  |  |  |
| Ans:<br>Sol: | <ul><li>(1) Pancreatic juice</li><li>(2) Intestinal juice</li><li>(2)</li></ul>                                                                                                                                                                                                                                                                                                                                                      |                           | (3) Gastric juice                                                          | (4) Chyme                 |  |  |  |  |
| Q.155        | With regard to insulin choose correct options.  (a) C-peptide is not present in mature insulin.  (b) The insulin produced by rDNA technology has C-peptide.  (c) The pro-insulin has C-peptide.  (d) A-peptide and B-peptide of insulin are interconnected by disulphide bridges.  Choose the correct answer from the options given below.  (1) (b) and (d) only (2) (b) and (c) only (3) (a), (c) and (d) only (4) (a) and (d) only |                           |                                                                            |                           |  |  |  |  |
| Ans:<br>Sol: | (3)                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           |                                                                            |                           |  |  |  |  |
|              | Persons with 'AB' blood group are called as "Universal recipients". This is due to: (1) Absence of antigens A and B on the surface of RBCs (2) Absence of antigens A and B in plasma (3) Presence of antibodies, anti-A and anti-B, on RBCs (4) Absence of antibodies, anti-A and anti-B, in plasma                                                                                                                                  |                           |                                                                            |                           |  |  |  |  |
| Ans:<br>Sol: | (4)                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           |                                                                            |                           |  |  |  |  |
| Q.157        | In a cross between a percentage of the proge                                                                                                                                                                                                                                                                                                                                                                                         |                           | n heterozygous for sickl                                                   | e cell anaemia gene, what |  |  |  |  |
| Ans:<br>Sol: | (1) 50 %<br>(3)                                                                                                                                                                                                                                                                                                                                                                                                                      | (2) 75 %                  | (3) 25 %                                                                   | (4) 100 %                 |  |  |  |  |
| Q.158        | Which enzyme is responsible (1) Thrombin                                                                                                                                                                                                                                                                                                                                                                                             |                           | of inactive fibrinogens to (3) Epinephrine                                 |                           |  |  |  |  |
| Ans:         | (1) 1 nrombin<br>(1)                                                                                                                                                                                                                                                                                                                                                                                                                 | (2) Renin                 | (э) Ершершие                                                               | (4) Thrombokinase         |  |  |  |  |

| Sol:         |                                                                                                                                                     |                                         |                |           |                                                                                                |                 |                              |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------|-----------|------------------------------------------------------------------------------------------------|-----------------|------------------------------|
| Q.159        | diffus<br>(1) p(                                                                                                                                    | sion) are: $O_2 = 104$ and $pCO_2 = 40$ |                | xygen ((  | $O_2$ ) and carbon dioxide ( $CO_2$ ) at alveoli (the site of (2) $PO_2 = 40$ and $PCO_2 = 45$ |                 |                              |
| Ans:<br>Sol: | (3) p(<br>(1)                                                                                                                                       | $O_2 = 95$ and $pCO_2 = 40$             |                |           | $(4) pO_2$                                                                                     | = 159 and pC    | $O_2 = 0.3$                  |
| Q.160        | paraly                                                                                                                                              | ysis of skeletal muscle is ca           | alled as:      | :         |                                                                                                |                 | ng to fatigue, weakening and |
| Ans:<br>Sol: | (1) A:<br>(3)                                                                                                                                       | rthritis (2) Mus                        | scular d       | ystrophy  | 7 (3) Mya                                                                                      | asthenia gravis | (4) Gout                     |
| Q.161        | Which is the "Only enzyme" that has "Capability" to catalyse Initiation, Elongation and Termination in the process of transcription in prokaryotes? |                                         |                |           |                                                                                                |                 | -                            |
|              |                                                                                                                                                     | NA dependent DNA polyn<br>NA Ligase     | nerase         |           | <ul><li>(2) DNA dependent RNA polymerase</li><li>(4) DNase</li></ul>                           |                 |                              |
| Ans:<br>Sol: | (2)                                                                                                                                                 | C                                       |                |           | ` /                                                                                            |                 |                              |
| Q.162        |                                                                                                                                                     | h of the following RNAs is              |                | quired fo | -                                                                                              | -               |                              |
| Ans:<br>Sol: | (1) m<br>(4)                                                                                                                                        | RNA (2) tRN                             | ÍΑ             |           | (3) rRN                                                                                        | JA              | (4) siRNA                    |
| Q.163        | Whic                                                                                                                                                | h one of the following is an uT (2) LNO | •              | ole of Ho | ormone ro<br>(3) Cu7                                                                           | •               | (4) Multiload 375            |
| Ans:<br>Sol: | (2)                                                                                                                                                 | (2) 21 (                                | <b>- - - -</b> |           | (8) 04.                                                                                        |                 | (1) 112021110110 0 7 0       |
| Q.164        |                                                                                                                                                     | enine makes 30% of the Dine in it?      | NA mo          | lecule, v | vhat will                                                                                      | be the percenta | ge of Thymine, Guanine and   |
| Ans:<br>Sol: | (1) T:<br>(3)                                                                                                                                       | 20; G: 30; C: 20 (2) T: 2               | 0; G: 20       | ); C: 30  | (3) T: 3                                                                                       | 0; G: 20; C: 20 | (4) T: 20; G: 25; C: 25      |
| Q.165        | Matcl                                                                                                                                               | n List - I with List - II.              |                |           |                                                                                                | <u>.</u>        |                              |
|              | List ·                                                                                                                                              | - I                                     | List -         | II        |                                                                                                |                 |                              |
|              | (a)                                                                                                                                                 | Aspergillus niger                       | (i)            | Acetic    | Acid                                                                                           |                 |                              |

| List · | - I                   | List - II |              |  |
|--------|-----------------------|-----------|--------------|--|
| (a)    | Aspergillus niger     | (i)       | Acetic Acid  |  |
| (b)    | Acetobacter aceti     | (ii)      | Lactic Acid  |  |
| (c)    | Clostridium butylicum | (iii)     | Citric Acid  |  |
| (d)    | Lactobacillus         | (iv)      | Butyric Acid |  |

|     | (a)   | (b)   | (c)   | (d)   |
|-----|-------|-------|-------|-------|
| (1) | (iii) | (i)   | (iv)  | (ii)  |
| (2) | (i)   | (ii)  | (iii) | (iv)  |
| (3) | (ii)  | (iii) | (i)   | (iv)  |
| (4) | (iv)  | (ii)  | (i)   | (iii) |

| Ans:<br>Sol: | (1)                                                           |                                           |            |          |                    |                                                                |                   |  |  |  |  |  |
|--------------|---------------------------------------------------------------|-------------------------------------------|------------|----------|--------------------|----------------------------------------------------------------|-------------------|--|--|--|--|--|
| Q.166        | Read the following statements.                                |                                           |            |          |                    |                                                                |                   |  |  |  |  |  |
|              |                                                               | (a) Metagenesis is observed in Helminths. |            |          |                    |                                                                |                   |  |  |  |  |  |
|              | (b) Echinoderms are triploblastic and coelomate animals.      |                                           |            |          |                    |                                                                |                   |  |  |  |  |  |
|              | (c) Round worms have organ-system level of body organization. |                                           |            |          |                    |                                                                |                   |  |  |  |  |  |
|              | (d) Comb plates present in ctenophores help in digestion.     |                                           |            |          |                    |                                                                |                   |  |  |  |  |  |
|              |                                                               |                                           |            |          | haracteristic of E |                                                                |                   |  |  |  |  |  |
|              |                                                               |                                           |            |          | m the options giv  |                                                                | wa a t            |  |  |  |  |  |
|              |                                                               | (c), (d) and<br>(a), (d) and              |            |          |                    | (2) (a), (b) and (c) are corr<br>(4) (b), (c) and (e) are corr |                   |  |  |  |  |  |
| Ans:         | (4)                                                           | (a), (u) and                              | i (c) aic  | COLLECT  |                    | (4) (b), (c) and (c) are con                                   | icci              |  |  |  |  |  |
| Sol:         | (.)                                                           |                                           |            |          |                    |                                                                |                   |  |  |  |  |  |
|              |                                                               |                                           |            |          |                    |                                                                |                   |  |  |  |  |  |
| Q.167        | Rec                                                           | eptors for                                | sperm b    | inding i | n mammals are p    | resent on:                                                     |                   |  |  |  |  |  |
|              | ` ′                                                           | Corona rac                                | liata      | (2) V    | itelline membran   | e (3) Perivitelline space (4                                   | 4) Zona pellucida |  |  |  |  |  |
| Ans:         | (4)                                                           |                                           |            |          |                    |                                                                |                   |  |  |  |  |  |
| Sol:         |                                                               |                                           |            |          |                    |                                                                |                   |  |  |  |  |  |
| Q.168        | 2 Mat                                                         | ch List-I v                               | vith Liet  | TT       |                    |                                                                |                   |  |  |  |  |  |
| Q.100        |                                                               |                                           | VIIII LISU |          | TT .               |                                                                |                   |  |  |  |  |  |
|              | List -                                                        | - 1                                       |            | List -   | 11                 |                                                                |                   |  |  |  |  |  |
|              | (a)                                                           | Metame                                    | rism       | (i)      | Coelenterata       |                                                                |                   |  |  |  |  |  |
|              | (b)                                                           | (b) Canal system                          |            | (ii)     | Ctenophora         |                                                                |                   |  |  |  |  |  |
|              | (c)                                                           | Comb p                                    | lates      | (iii)    | Annelida           |                                                                |                   |  |  |  |  |  |
|              | (d)                                                           | Cnidobl                                   | asts       | (iv)     | Porifera           |                                                                |                   |  |  |  |  |  |
| _            | Cho                                                           | ose the co                                | rrect ans  | wer fro  | m the options giv  | ven below.                                                     |                   |  |  |  |  |  |
|              |                                                               | (a)                                       | (b)        | (c)      | (d)                |                                                                |                   |  |  |  |  |  |
|              | (1)                                                           | (iv)                                      | (iii)      | (i)      | (ii)               |                                                                |                   |  |  |  |  |  |
|              | (2)                                                           | (iii)                                     | (iv)       | (i)      | (ii)               |                                                                |                   |  |  |  |  |  |
|              | (3)                                                           | (iii)                                     | (iv)       | (ii)     | (i)                |                                                                |                   |  |  |  |  |  |
| Ans:         | (4)<br>(3)                                                    | (iv)                                      | (i)        | (ii)     | (iii)              |                                                                |                   |  |  |  |  |  |
| Sol:         | (3)                                                           |                                           |            |          |                    |                                                                |                   |  |  |  |  |  |
| 201.         |                                                               |                                           |            |          |                    |                                                                |                   |  |  |  |  |  |
| Q.169        | Ery                                                           | thropoietir                               | n hormor   | ne whicl | n stimulates R.B.  | C. formation is produced by                                    | :                 |  |  |  |  |  |
|              | (1)                                                           | Alpha cell                                | s of pand  | creas    |                    | (2) The cells of rostral ade                                   | enohypophysis     |  |  |  |  |  |
|              | (3)                                                           | The cells of                              | of bone n  | narrow   |                    | (4) Juxtaglomerular cells                                      | of the kidney     |  |  |  |  |  |
| Ans:         | (4)                                                           |                                           |            |          |                    |                                                                |                   |  |  |  |  |  |
| Sol:         |                                                               |                                           |            |          |                    |                                                                |                   |  |  |  |  |  |
| 0.170        | 17                                                            | orol disse                                | 200 00= -  | nroad 41 | rough :            |                                                                |                   |  |  |  |  |  |
| Q.170        |                                                               | eral diseas<br>Using steri                |            | _        | nougn:             |                                                                |                   |  |  |  |  |  |
|              |                                                               | -                                         |            |          | infected person    |                                                                |                   |  |  |  |  |  |
|              |                                                               | Infected m                                |            |          | miceted person     |                                                                |                   |  |  |  |  |  |
|              |                                                               | Kissing                                   |            |          |                    |                                                                |                   |  |  |  |  |  |
|              |                                                               | Inheritance                               | e          |          |                    |                                                                |                   |  |  |  |  |  |

| Ans:                          | (1) (a), (b) and (c) only (2) (b), (c) and (d) only (3) (b) and (c) only (4) (a) and (c) only (3)                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                      |                                                                                                                                                                                                                                        |                          |          |                                        |   |  |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------|----------------------------------------|---|--|
| Sol:<br>Q.171<br>Ans:<br>Sol: | (1) A ri<br>(2) Hy <sub>I</sub><br>(3) In f                                                                                                                                                                                                      | ing of garden or garden of the | astric cae<br>nx lies w<br>7 <sup>th</sup> - 9 <sup>tl</sup> | eca is pre<br>ithin the<br>h sterna  | aracteristics is incorrect with respect to cockroach? is present at the junction of midgut and hind gut. in the cavity enclosed by the mouth parts. terna together form a genital pouch. nt in both sexes, bears a pair of anal cerci. |                          |          |                                        |   |  |
| Q.172                         | Match                                                                                                                                                                                                                                            | the follo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | owing :                                                      |                                      |                                                                                                                                                                                                                                        |                          |          |                                        |   |  |
| Q.172                         | List                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | JWIIIG .                                                     | List -                               | List - II                                                                                                                                                                                                                              |                          |          |                                        |   |  |
|                               | (a)                                                                                                                                                                                                                                              | Physa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | alia                                                         | (i)                                  | Pearl oyster                                                                                                                                                                                                                           |                          |          |                                        |   |  |
|                               | (b) Limulus                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (ii)                                                         | Portuguese Man of War                |                                                                                                                                                                                                                                        |                          |          |                                        |   |  |
|                               | (c)                                                                                                                                                                                                                                              | Ancy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | lostoma                                                      | (iii)                                | Living fossil                                                                                                                                                                                                                          |                          |          |                                        |   |  |
|                               | (d)                                                                                                                                                                                                                                              | Pinctada (iv) Hookworm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                              |                                      |                                                                                                                                                                                                                                        |                          |          |                                        |   |  |
| Ans:<br>Sol:                  | (1)<br>(2)<br>(3)<br>(4)<br>(3)                                                                                                                                                                                                                  | (a)<br>(ii)<br>(iv)<br>(ii)<br>(i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (b) (iii) (i) (iii) (iv)                                     | (c)<br>(i)<br>(iii)<br>(iv)<br>(iii) | (d)<br>(iv)<br>(ii)<br>(i)<br>(ii)                                                                                                                                                                                                     |                          |          |                                        |   |  |
| Q.173                         | Which one of the following organisms bears hollow and pneumatic long bones?                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                      |                                                                                                                                                                                                                                        |                          |          |                                        |   |  |
| Ans:<br>Sol:                  | (1) Neophron (2) Hemidactylus (1)                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              | (3) Macropus                         |                                                                                                                                                                                                                                        | (4) Ornithorhynchus      |          |                                        |   |  |
| Q.174<br>Ans:<br>Sol:         | The centriole undergoes duplication during: (1) S-phase (2) Prophase (1)                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              | (3) Metaphase                        |                                                                                                                                                                                                                                        | (4) G <sub>2</sub> phase |          |                                        |   |  |
| Q.175 Ans: Sol:               | During the process of gene amplification using PCR, if very high temperature is not maintained in the beginning, then which of the following steps of PCR will be affected first?  (1) Annealing (2) Extension (3) Denaturation (4) Ligation (3) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                      |                                                                                                                                                                                                                                        |                          |          |                                        |   |  |
| Q.176 Ans: Sol:               | 6 Which of the following is not an objective of Bi (1) Improve protein content (3) Improve vitamin content (2)                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                      |                                                                                                                                                                                                                                        | (2) Improve res          | sistance | to diseases<br>ent and mineral content | - |  |

|                  | (1) CFC <sub>8</sub>                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | re used to measure (2) Str | ure thicl<br>atosphe |          | (3) Ozone           | (4) Tropos        | phere |  |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------|----------|---------------------|-------------------|-------|--|
| Ans:<br>Sol:     | (3)                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |                      |          |                     |                   |       |  |
| Q.178            | <ul><li>(1) Ileo-</li><li>(2) Junct</li><li>(3) Gastr</li></ul>                                                                                                                                                                                                                             | Sphincter of oddi is present at: (1) Ileo-caecal junction (2) Junction of hepato-pancreatic duct and duodenum (3) Gastro-oesophageal junction (4) Junction of jejunum and duodenum                                                                                                                                                                                                                                                                                                |                            |                      |          |                     |                   |       |  |
| Ans:<br>Sol:     | (2)                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |                      |          |                     |                   |       |  |
| Q.179  Ans: Sol: | <ul><li>(1) High</li><li>(2) Low</li><li>(3) High</li></ul>                                                                                                                                                                                                                                 | Select the favourable conditions required for the formation of oxyhaemoglobin at the alveoli.  (1) High pO <sub>2</sub> , low pCO <sub>2</sub> , less H <sup>+</sup> , lower temperature  (2) Low pO <sub>2</sub> , high pCO <sub>2</sub> , more H <sup>+</sup> , higher temperature  (3) High pO <sub>2</sub> , high pCO <sub>2</sub> , less H <sup>+</sup> , higher temperature  (4) Low pO <sub>2</sub> , low pCO <sub>2</sub> , more H <sup>+</sup> , higher temperature  (1) |                            |                      |          |                     |                   |       |  |
|                  | Idontify                                                                                                                                                                                                                                                                                    | tha ina                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | orract pair                |                      |          |                     |                   |       |  |
| Q.180            | (1) Alka                                                                                                                                                                                                                                                                                    | loids -                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |                      |          | (2) Toxin - Abri    |                   |       |  |
| Ans:<br>Sol:     | (3) Lecti<br>(4)                                                                                                                                                                                                                                                                            | (3) Lectins - Concanavalin A (4) Drugs - Ricin                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |                      |          |                     |                   |       |  |
| Q.181 Ans: Sol:  | Which of the following statements wrongly represents the nature of smooth muscle?  (1) These muscle have no striations (2) They are involuntary muscles (3) Communication among the cells is performed by intercalated discs (4) These muscles are present in the wall of blood vessels (3) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |                      |          |                     |                   |       |  |
|                  | important. Which of the following molecular diagnostic techniques is very useful for early detection?  (1) Western Blotting Technique  (2) Southern Blotting Technique  (3) ELISA Technique  (4) Hybridization Technique                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |                      |          |                     |                   |       |  |
| Ans:<br>Sol:     | (3)                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |                      |          |                     |                   |       |  |
| Q.183            | Match L                                                                                                                                                                                                                                                                                     | ist - I v                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | vith List - II.            |                      |          |                     |                   |       |  |
|                  | List - II                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |                      |          |                     |                   |       |  |
|                  |                                                                                                                                                                                                                                                                                             | (a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Vaults                     | (i)                  | Entry of | sperm through (     | Cervix is blocked |       |  |
|                  |                                                                                                                                                                                                                                                                                             | (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | IUDs                       | (ii)                 | Remova   | al of Vas deferens  | S                 |       |  |
|                  |                                                                                                                                                                                                                                                                                             | (c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Vasectomy                  | (iii)                | Phagocy  | ytosis of sperms v  | within the Uterus |       |  |
|                  |                                                                                                                                                                                                                                                                                             | (d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Tubectomy                  | (iv)                 | Remova   | ıl of fallopian tub | e                 |       |  |

(d)

(iii)

(c)

(i)

(a)

(iv)

(1)

(b)

(ii)

| Ans:<br>Sol:          | (2)<br>(3)<br>(4)<br>(2)                                                                                                                                                                                                                                                                                                                                  | (i)<br>(ii)<br>(iii) | (iii)<br>(iv)<br>(i)  | (ii)<br>(iii)<br>(iv) | (iv)<br>(i)<br>(ii) |               |                                |       |  |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------|-----------------------|---------------------|---------------|--------------------------------|-------|--|
| Q.184<br>Ans:         | The organelles that are included in the endomembrane system are: (1) Endoplasmic reticulum, Mitochondria, Ribosomes and Lysosomes (2) Endoplasmic reticulum, Golgi complex, Lysosomes and Vacuoles (3) Golgi complex, Mitochondria, Ribosomes and Lysosomes (4) Golgi complex, Endoplasmic reticulum, Mitochondria and Lysosomes (2)                      |                      |                       |                       |                     |               |                                |       |  |
| Sol:                  | (2)                                                                                                                                                                                                                                                                                                                                                       |                      |                       |                       |                     |               |                                |       |  |
| Q.185<br>Ans:<br>Sol: | Which stage of meiotic prophase shows terminalisation of chiasmata as its distinctive feature?  (1) Leptotene (2) Zygotene (3) Diakinesis (4) Pachytene  (3)                                                                                                                                                                                              |                      |                       |                       |                     |               |                                |       |  |
|                       |                                                                                                                                                                                                                                                                                                                                                           |                      |                       |                       | Section             | on-B (1       | Biology : Zoolog               | (y)   |  |
| Q.186 Ans: Sol:       | Which of these is not an important component of initiation of parturition in humans?  (1) Increase in estrogen and progesterone ratio (2) Synthesis of prostaglandins (3) Release of Oxytocin (4) Release of Prolactin                                                                                                                                    |                      |                       |                       |                     |               |                                |       |  |
| Q.187 Ans: Sol:       | Which of the following is not a step in Multiple Ovulation Embryo Transfer Technology (MOET)?  (1) Cow is administered hormone having LH like activity for super ovulation  (2) Cow yields about 6 – 8 eggs at a time  (3) Cow is fertilized by artificial insemination  (4) Fertilized eggs are transferred to surrogate mothers at 8.32 cell stage  (1) |                      |                       |                       |                     |               |                                |       |  |
| Q.188                 | Match                                                                                                                                                                                                                                                                                                                                                     | List - I             | with Lis              | st - II.              |                     |               |                                |       |  |
| -                     |                                                                                                                                                                                                                                                                                                                                                           |                      | List - I              |                       |                     |               | List - II                      |       |  |
|                       | (a)                                                                                                                                                                                                                                                                                                                                                       | Allen's              |                       |                       |                     | (i)           | Kangaroo rat                   |       |  |
|                       | (b)                                                                                                                                                                                                                                                                                                                                                       |                      | ological a            |                       |                     | (ii)          | Desert lizard                  | 1 41  |  |
|                       | (c)<br>(d)                                                                                                                                                                                                                                                                                                                                                |                      | ioural ac<br>emical a | _                     |                     | (iii)<br>(iv) | Marine fish at d<br>Polar seal | iepth |  |
|                       | _ ` /                                                                                                                                                                                                                                                                                                                                                     |                      |                       |                       |                     | _ ` /         | s given below.                 |       |  |
|                       | Choos                                                                                                                                                                                                                                                                                                                                                     | (a)                  | (b)                   | (c)                   | (d)                 | puon          | g given below.                 |       |  |
|                       | (1)                                                                                                                                                                                                                                                                                                                                                       | (iv)                 | (ii)                  | (iii)                 | (i)                 |               |                                |       |  |
|                       | (2)                                                                                                                                                                                                                                                                                                                                                       | (iv)                 | (i)                   | (iii)                 | (ii)                |               |                                |       |  |
|                       | (3)                                                                                                                                                                                                                                                                                                                                                       | (iv)                 | (i)                   | (ii)                  | (iii)               |               |                                |       |  |
| Ans:<br>Sol:          | (4) (3)                                                                                                                                                                                                                                                                                                                                                   | (iv)                 | (iii)                 | (ii)                  | (i)                 |               |                                |       |  |
| Q.189                 | <b>Assertion</b> (A): A person goes to high altitude and experiences 'altitude sickness' with symptoms like breathing difficulty and                                                                                                                                                                                                                      |                      |                       |                       |                     |               |                                |       |  |

NEET Sarthi Kota\_ Online Platform for Board Exams, NEET, JEE & NTSE (Kota Office: 8090908042)

Reason: Due to low atmospheric pressure at high altitude,

In the light of the above statements, choose the correct answer

the body does not get sufficient oxygen.

heart palpitations.

from the options given below.

- (1) Both (A) and (R) are true and (R) is the correct explanation of (A)
- (2) Both (A) and (R) are true but (R) is not the correct explanation of (A)
- (3) (A) is true but (R) is false
- (4) (A) is false but (R) is true

Ans:

(1)

Sol:

- Q.190 Following are the statements with reference to 'lipids'.
  - (a) Lipids having only single bonds are called unsaturated fatty acids.
  - (b) Lecithin is a phospholipid.
  - (c) Trihydroxy propane is glycerol.
  - (d) Palmitic acid has 20 carbon atoms including carboxyl carbon.
  - (e) Arachidonic acid has 16 carbon atoms.

Choose the correct answer from the options given below.

- (1) (a) and (b) only
- (2) (c) and (d) only
- (3) (b) and (c) only
- (4) (b) and (e) only

Ans: (3)

Sol:

#### O.191 Match List-I with List-II.

|     | List - I         | List - II |                      |  |
|-----|------------------|-----------|----------------------|--|
| (a) | Scapula          | (i)       | Cartilaginous joints |  |
| (b) | Cranium          | (ii)      | Flat bone            |  |
| (c) | Sternum          | (iii)     | Fibrous joints       |  |
| (d) | Vertebral column | (iv)      | Triangular flat bone |  |

Choose the correct answer from the options given below.

(a) (b) (c) (d) (1) (i) (iii) (ii) (iv) (2) (ii) (iii) (iv) (i) (3) (iv) (ii) (iii) (i) (4) (iv) (iii) (ii) (i)

Ans: (4)

Sol:

- Q.192 Identify the types of cell junctions that help to stop the leakage of the substances across a tissue and facilitation of communication with neighbouring cells via rapid transfer of ions and molecules.
  - (1) Gap junctions and Adhering junctions, respectively.
  - (2) Tight junctions and Gap junctions, respectively.
  - (3) Adhering junctions and Tight junctions, respectively.
  - (4) Adhering junctions and Gap junctions, respectively.

Ans: (2)

Sol:

### Q.193 Statement I:

The codon 'AUG' codes for methionine and phenylalanine.

#### **Statement II:**

'AAA' and 'AAG' both codons code for the amino acid lysine.

In the light of the above statements, choose the correct answer from the options given below.

- (1) Both Statement I and Statement II are true
- (2) Both Statement I and Statement II are false
- (3) **Statement I** is correct but **Statement II** is false
- (4) Statement I is incorrect but Statement II is true

Ans: (4)

| Sal | ۰  |
|-----|----|
| OU  | L. |

Q.194 Which of the following secretes the hormone,

relaxin, during the later phase of pregnancy?

(1) Graafian follicle (2) Corpus luteum (3) Foetus (4) Uterus

Ans: (2)

Sol:

Q.195 Following are the statements about prostomium of earthworm.

- (a) It serves as a covering for mouth.
- (b) It helps to open cracks in the soil into which it can crawl.
- (c) It is one of the sensory structures.
- (d) It is the first body segment.

Choose the correct answer from the options given below.

- (1) (a), (b) and (c) are correct
- (2) (a), (b) and (d) are correct
- (3) (a), (b), (c) and (d) are correct
- (4) (b) and (c) are correct

Ans: (1)

Sol:

- Q.196 Which one of the following statements about Histones is wrong?
  - (1) Histones are organized to form a unit of 8 molecules.
  - (2) The pH of histones is slightly acidic.
  - (3) Histones are rich in amino acids Lysine and Arginine.
  - (4) Histones carry positive charge in the side chain.

Ans: (2)

Sol:

- Q.197 During muscular contraction which of the following events occur?
  - (a) 'H' zone disappears
  - (b) 'A' band widens
  - (c) 'I' band reduces in width
  - (d) Myosine hydrolyzes ATP, releasing the ADP and Pi
  - (e) Z-lines attached to actins are pulled inwards

Choose the correct answer from the options given below.

(1) (a), (c), (d), (e) only (2) (a), (b), (c), (d) only (3) (b), (c), (d), (e) only (4) (b), (d), (e), (a) only

Ans: (1)

Sol:

- Q.198 The Adenosine deaminase deficiency results into:
  - (1) Dysfunction of Immune system

(2) Parkinson's disease

(3) Digestive disorder

(4) Addison's disease

Ans: (1)

Sol:

#### Q.199 Match List-II with List-II

|     | List - I                          |       | List - II                                                                          |  |  |
|-----|-----------------------------------|-------|------------------------------------------------------------------------------------|--|--|
| (a) | Adaptive radiation                | (i)   | Selection of resistant varieties due to excessive use of herbicides and pesticides |  |  |
| (b) | Convergent evolution              | (ii)  | Bones of forelimbs in Man and Whale                                                |  |  |
| (c) | Divergent evolution               | (iii) | Wings of Butterfly and Bird                                                        |  |  |
| (d) | Evolution by anthropogenic action | (iv)  | Darwin Finches                                                                     |  |  |

(d) (a) (b) (c) (iv) (1) (iii) (ii) (i) (2) (iii) (ii) (i) (iv) (3) (ii) (iii) (i) (iv) (4) (i) (iv) (iii) (ii)

Ans: (1)

Sol:

## Q.200 Match List-I with List-II

|    | List - I     | List - II |                        |  |  |
|----|--------------|-----------|------------------------|--|--|
| (a | Filariasis   | (i)       | Haemophilus influenzae |  |  |
| (b | ) Amoebiasis | (ii)      | Trichophyton           |  |  |
| (c | Pneumonia    | (iii)     | Wuchereria bancrofti   |  |  |
| (d | ) Ringworm   | (iv)      | Entamoeba histolytica  |  |  |

(b) (a) (c) (d) (1) (iv) (i) (iii) (ii) (iii) (2) (iv) (i) (ii) (3) (i) (ii) (iv) (iii) (4) (ii) (iii) (i) (iv)

Ans: (2)