NEET (UG)-2017

Q.1 A spring of force constant k is cut in lengths of ratio 1 : 2 : 3. They are connected in series and the new force constant is k'. Then they are connected in parallel and force constant is k''. Then k' : k'' is :-

Ans: (2)

Sol: Length of the spring segments = $\frac{\ell}{6}$, $\frac{\ell}{3}$, $\frac{\ell}{2}$

As we know $K \propto \frac{1}{\rho}$

so spring constants for spring segments will be

$$K_1 = 6K$$
, $K_2 = 3K$, $K_3 = 2K$

so in parallel combination

$$K'' = K_1 + K_2 + K_3$$

in series combination

K' = K (As it will become original spring)

so K': K" = 1:11

Q.2 The ratio of resolving powers of an optical microscope for two wavelength λ_1 = 4000 Å and λ_2 = 6000 Å is:-

Ans: (2)

Sol: Resolving power $\propto \frac{1}{\lambda}$

$$\frac{RP_1}{RP_2} = \frac{\lambda_2}{\lambda_1} = \frac{6000\text{Å}}{4000\text{Å}} = \frac{3}{2}$$

Q.3 The two nearest harmonics of a tube closed at one end and open at other end are 220 Hz and 260 Hz. What is the fundamental frequency of the system?

- (1) 20 Hz
- (2) 30 Hz
- (3) 40 Hz
- (4) 10 Hz

Ans: (1)

Sol: Difference between any two consecutive frequencies of

$$COP = \frac{2v}{4\ell} = 260 - 220 = 40Hz \Rightarrow \frac{v}{4\ell} = 20Hz$$

So, fundamental frequencing = 20 Hz

Q.4 Consider a drop of rain water having mass 1 g falling from a height of 1 km. It hits the ground with a speed of 50 m/s. Take 'g' constant with a value 10 m/s². The work done by the (i) gravitational force and the (ii) resistive force of air is:-

- (1) (i) 1.25 J
- (ii) -8.25 J
- (2) (i) 100 J
- (ii) 8.75 J

- (3) (i) 10 J
- (ii) -8.75 J
- (4) (ii) -10 J
- (ii) -8.25 J

Ans: (3)

Sol: Work done by the gravity (Wg) = mgh

$$= 10^{-3} \times 10 \times 10^{3} = 10 \text{ J}$$

By work-energy theorem = $W_g + W_{res} = \Delta KE$

$$10 + W_{res} = \frac{1}{2} \times 10^{-3} \times (50)^2$$

$$W_{res} = -8.75 J$$

A physical quantity of the dimensions of length that can be formed out of c, G and $\frac{e^2}{4\pi\epsilon_2}$ is [c is Q.5 velocity of light. G is universal constant of gravitation and e is charge] :-

$$(1) c^2 \left[G \frac{e^2}{4\pi\epsilon_0} \right]^{1/2}$$

$$(2) \frac{1}{c^2} \left[\frac{e^2}{G4\pi\epsilon_0} \right]^{1/2}$$

$$(3) \frac{1}{c} G \frac{e^2}{4\pi\epsilon_0}$$

$$(1) c^{2} \left[G \frac{e^{2}}{4\pi\epsilon_{0}} \right]^{1/2}$$

$$(2) \frac{1}{c^{2}} \left[\frac{e^{2}}{G4\pi\epsilon_{0}} \right]^{1/2}$$

$$(3) \frac{1}{c} G \frac{e^{2}}{4\pi\epsilon_{0}}$$

$$(4) \frac{1}{c^{2}} \left[G \frac{e^{2}}{4\pi\epsilon_{0}} \right]^{-1/2}$$

Ans:

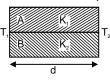
Sol:
$$[L] = [c]^a [G]^b \left[\frac{e^2}{4\pi\varepsilon_0} \right]^c$$

$$[L] = [LT^{-1}]^a [M^{-1}L^3T^{-2}]^b [ML^3T^{-2}]^c$$

$$[L] = L^{a+3b+3c}M^{-b+c}T^{-a-ab-2c}$$

$$a + 3b + 3c = 1$$

$$-b + c = 0$$


$$a + 2b + 2c = 0$$

On solving,

$$a = -2, b = \frac{1}{2}, c = \frac{1}{2}$$

$$\therefore L = \frac{1}{c^2} \left[G \cdot \frac{e^2}{4\pi\varepsilon_0} \right]^{\frac{1}{2}}$$

Q.6 Two rods A and B of different materials are welded together as shown in figure. Their thermal conductivities are K₁ and K₂. The thermal conductivity of the composite rod will be:

(1)
$$\frac{3(K_1 + K_2)}{2}$$
 (2) $K_1 + K_2$

(3)
$$2(K_1 + K_2)$$

(3)
$$2(K_1 + K_2)$$
 (4) $\frac{K_1 + K_2}{2}$

Ans:

Sol: In parallel
$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2}$$

$$\frac{K_{eq}(2A)}{\ell} = \frac{K_1A}{\ell} + \frac{K_2A}{\ell}$$

$$K_{eq} = \frac{K_1+K_2}{2}$$

Q.7 A capacitor is charged by a battery. The battery is removed and another identical uncharged capacitor is connected in parallel. The total electrostatic energy of resulting system :-

(1) Decrease by a factor of 2

- (2) Remains the same
- (3) Increases by a factor of 2

(4) Increases by a factor of 4

Ans:

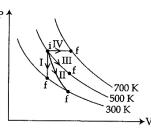
Sol:
$$U_i = \frac{1}{2}CV^2$$

$$U_f = \frac{1}{2} [2C] \left[\frac{V}{2} \right]^2 = \frac{1}{2} U_i$$

Decrease by a factor of 2

Q.8 In a common emitter transistor amplifier the audio signal voltage across the collector is 3V. The resistance of collector is 3 k Ω . If current gain is 100 and the base resistance is 2 k Ω , the voltage and power gain of the amplifier is :-

- (1) 15 and 200
- (2) 150 and 15000
- (3) 20 and 2000
- (4) 200 and 1000


Ans:

Sol:

$$A_V = \beta \frac{R_C}{R_B} = 100 \times \frac{3k\Omega}{2k\Omega} = 150$$

Power gain = $\beta A_V = 100 \times 150 = 15000$

Q.9 Thermodynamic processes are indicated in the following diagram.

Match the following:-

Column-1 Column-2 P. Process I a. Adiabatic Q. Process II b. Isobaric R. Process III c. Isochoric S. Process IV d. Isothermal

(1)
$$P \rightarrow c$$
, $Q \rightarrow a$, $R \rightarrow d$, $S \rightarrow h$

(2)
$$P \rightarrow c$$
, $Q \rightarrow d$, $R \rightarrow b$, $S \rightarrow a$

(3)
$$P \rightarrow d$$
, $Q \rightarrow b$, $R \rightarrow a$, $S \rightarrow c$

(4)
$$P \rightarrow a$$
, $Q \rightarrow c$, $R \rightarrow d$, $S \rightarrow b$

Ans:

Sol:

Process (1) \rightarrow volume constant \rightarrow Isochoric

Process (2) \rightarrow adiabatic

Process (3) \rightarrow Temperature constant \rightarrow Isothermal

Process (4) \rightarrow Pressure constant \rightarrow Isobaric

Suppose the charge of a proton and an electron differ slightly. One of them is -e, the other is Q.10 (e + Δ e). If the net of electrostatic force and gravitational force between two hydrogen atoms placed at a distance d (much greater than atomic size) apart is zero, then Δe is of the order of [Given mass of hydrogen $m_h = 1.67 \times 10^{-27} \text{ kg}$]

(1)
$$10^{-23}$$
 C

(2)
$$10^{-37}$$
 C

$$(3)\ 10^{-47}\ C$$

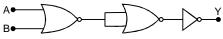
Ans:

Sol:
$$\frac{K \times (\Delta e)^2}{r^2} = \frac{Gm^2}{r^2}$$

$$\Delta e = m\sqrt{\frac{G}{K}} = 1.67 \times 10^{-27} \sqrt{\frac{6.67 \times 10^{-11}}{9 \times 10^9}} C$$

= 1.436 × 10⁻³⁷ C

Q.11 The resistance of a wire is 'R' ohm. If it is melted and stretched to 'n' times its original length, its new resistance will be :-


$$(1)\frac{R}{n}$$

(3)
$$\frac{R}{n^2}$$

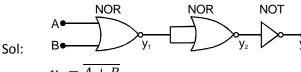
Ans:

Sol:
$$R = \frac{\rho \ell}{A} = \frac{\rho \ell^2}{volume} \Rightarrow R \propto \ell^2$$

 $\Rightarrow R_2 = n^2 R_1$

Q.12 The given electrical network is equivalent to:

(1) OR gate


(2) NOR gate

(3) NOT gate

(4) AND gate

Ans:

(2)

$$y_1 = \overline{A + B}$$

$$y_2 = \overline{y_1 + y_1} = \overline{y_1} = \overline{A + B} = A + B$$

$$y = \overline{y_2} = \overline{A + B}$$

NOR GATE

Q.13 The de-Broglie wavelength of a neutron is thermal equilibrium with heavy water at a temperature. T (Kelvin) and mass m, is :-

(1)
$$\frac{h}{\sqrt{3}mkT}$$

$$(2)\frac{2h}{\sqrt{3}mkT}$$

$$(3)\frac{2h}{\sqrt{mkT}}$$

$$(4)\frac{h}{\sqrt{mkT}}$$

Ans: (1)

Kinetic energy of thermal neutron with equilibrium is $\frac{3}{2}KT$ Sol:

$$\lambda = \frac{h}{mv} = \frac{h}{\sqrt{2mK.E.}} = \frac{h}{\sqrt{2m(\frac{3}{2}KT)}} = \frac{h}{\sqrt{3mKT}}$$

Q.14 Which one of the following represents forward bias diode?

$$(1) \xrightarrow{-4V} \longrightarrow WW \xrightarrow{-3V} \qquad (2) \xrightarrow{-2V} \longrightarrow WW \xrightarrow{+2V} \qquad (3) \xrightarrow{3V} \longrightarrow WW \xrightarrow{5V} \qquad (4) \xrightarrow{0V} \longrightarrow WW \xrightarrow{-2V}$$

Ans:

In forward bias $V_1 > V_2$

$$\Rightarrow$$
 only $\overrightarrow{\text{oV}}$ \longrightarrow www $\overrightarrow{\text{-2V}}$

is in forward bias

Q.15 A long solenoid of diameter 0.1 m has 2×10^4 turns per meter. At the centre of the solenoid, a coil of 100 turns and radius 0.01 m is placed with its axis coinciding with the solenoid axis. The current in the solenoid reduced at a constant rate to 0A from 4A in 0.05s. If the resistance of the coil is $10\pi^2\Omega$, the total charge flowing through the coil during this time is :-

(3)
$$16 \pi \mu C$$

(4)
$$32 \pi \mu C$$

(2)Ans:

Sol:
$$q = \left[\left(\frac{\Delta \phi}{\Delta t} \right) \cdot \frac{1}{R} \right] \Delta t$$

$$q = \left[\mu_0 n N \pi r^2 \frac{\Delta i}{\Delta t} \right] \frac{1}{R} \Delta t$$

$$q = \left[4\pi \times 10^{-7} \times 2 \times 10^4 \times 100 \times \pi \times (10^{-2})^2 \times \left(\frac{4}{0.5} \right) \right] \frac{1}{10\pi^2} \times 0.05$$

$$q = 32 \text{ uC}$$

Q.16 Preeti reached the metro station and found that the escalator was not working. She walked up the stationary escalatory in time t₁. On other days, if she remains stationary on the moving escalator, then the escalator takes her up in time t₂. The time taken by her to walk up on the moving escalator will be :-

$$(1)\frac{t_1t_2}{t_2-t_1}$$

(2)
$$\frac{t_1t_2}{t_2+t_1}$$

(3)
$$t_1 - t_2$$

(4)
$$\frac{t_1+t_2}{2}$$

Ans:

Sol: $V_1 \rightarrow velocity of Preeti$

 $V_2 \rightarrow velocity of escalator$

 $\ell \rightarrow \text{distance}$

$$t_1 = \frac{d}{v_{GE}} = \frac{d}{v_1}$$

$$t_2 = \frac{d}{v_E} = \frac{d}{v_2}$$

$$t = \frac{d}{v_1 + v_2} = \frac{d}{\frac{d}{t_1} + \frac{d}{t_2}}$$

$$t = \frac{t_1 t_2}{t_1 + t_2}$$

Young's double slit experient is first performed in air and then in a medium other than air. It is Q.17 found that 8th bright fringe in the medium lies where 5th dark fringe lies in air. The refractive index of the medium is nearly.

(3)

Ans:

Sol:

 $(y_8)_{Bright, medium} = (y_5)_{Dark, air}$

$$\frac{8\lambda_m D}{d} = \left(\frac{2(5)-1}{2}\right) \frac{\lambda D}{d}$$

$$\frac{8\lambda}{\mu} = \frac{9}{2} \frac{\lambda D}{d} \Rightarrow \mu = \frac{16}{9} = 1.78$$

Q.18 A beam of light from a source L is incident normally on a plane mirror fixed at a certain distance x from the source. The beam is reflected back as a spot on a scale placed just above the source I. When the mirror is rotated through a small angle θ , the spot of the light is found to move through a distance y on the scale. The angle θ is given by :-

$$(1)\frac{y}{x}$$

(2)
$$\frac{x}{2y}$$

(3)
$$\frac{x}{y}$$

$$(4)\frac{y}{2x}$$

Ans:

(4)

Sol:

$$2\theta = \frac{y}{x}$$
; $\theta = \frac{y}{2x}$

Q.19 If θ_1 and θ_2 be the apparent angles of dip observed in two vertical planes at right angles to each other, then the true angle of dip θ is given by :-

(1)
$$tan^2\theta = tan^2\theta_1 + tan^2\theta_2$$

(2)
$$\cot^2\theta = \cot^2\theta_1 - \cot^2\theta_2$$

(3)
$$tan^2\theta = tan^2\theta_1 - tan^2\theta_2$$

(4)
$$\cot^2\theta = \cot^2\theta_1 + \cot^2\theta_2$$

Ans:

Sol:
$$\tan \theta_1 = \frac{\tan \theta}{\cos \theta}$$

$$tan \theta_1 = \frac{tan \theta}{cos \alpha}$$
 & $tan \theta_2 = \frac{tan \theta}{cos(90-\alpha)} = \frac{tan \theta}{sin \alpha}$

As
$$\sin^2\alpha + \cos^2\alpha = 1$$

So $\cot^2\theta_2 + \cot^2\theta_1 = \cot^2\theta$

Q.20 Two cars moving in opposite directions approach each other with speed of 22 m/s and 16.5 m/s respectively. The driver of the first car blows a horn having a frequency 400 Hz. The frequency heard by the driver of the second car is [velocity of sound 340 m/s]:-

Ans:

Sol:

$$A = 22 \text{ m/s}$$
 $V_0 = 16.5 \text{ m/s}$ $V_0 = 16.5 \text{ m/s}$

As we know for given condition

$$f_{app} = f_0 \left(\frac{v + v_{observer}}{v - v_{source}} \right) = 400 \left(\frac{340 + 16.5}{340 - 22} \right)$$

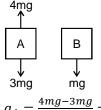
 $f_{app} = 448 \text{ Hz}$

Q.21 Two blocks A and B of masses 3m and m respectively are connected by a massless and inextensible string. The whole system is suspended by a massless spring as shown in figure. The magnitudes of acceleration of A and B immediately after the string is cut, are respectively:-

(1)
$$\frac{g}{3}$$
, g

(3)
$$\frac{g}{3}, \frac{g}{3}$$

(4) g,
$$\frac{g}{3}$$


Ans:

(1)

Sol: Before cutting the strip:-

After cutting the strip :-

$$a_A = \frac{4mg - 3mg}{3m} = \frac{g}{3}$$
$$a_B = \frac{mg}{m} = g$$

$$a_B = \frac{mg}{m} = g$$

Q.22 A thin prism having refracting angle 10° is made of glass of refractive index 1.42. This prism is combined with another thin prism of glass of refractive index 1.7. This combination produces dispersion without deviation. The refracting angle of second prism should be :-

- $(1) 6^{\circ}$
- $(2) 8^{\circ}$
- $(3) 10^{\circ}$
- $(4) 4^{\circ}$

Ans:

(1)

Sol: For dispersion without deviation

$$\delta_1 + \delta_2 = 0$$

$$A_1(\mu_1 - 1) = A_2(\mu_2 - 1)$$

 $10(1.42 - 1) = A_2(1.7 - 1)$

$$A_2 = 6^{\circ}$$

Q.23 The acceleration due to gravity at a height 1 km above the earth is the same as at a depth d below the surface of earth. Then :-

(2)
$$d = \frac{3}{2}km$$

(3)
$$d = 2 \text{ km}$$

$$(4) d = \frac{1}{2} km$$

Ans: (3)

Sol:
$$\therefore g_h = g_d$$

$$g\left(1 - \frac{2h}{R}\right) = g\left(1 - \frac{d}{R}\right)$$

$$d = 2h = 2 \text{ km}$$

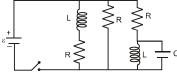
Q.24 A potentiometer is an accurate and versatile device to make electrical measurements of E.M.F. because the method involves :-

- (1) Potential gradients
- (2) A condition of no current flow through the galvanometer
- (3) A combination of cells, galvanometer and resistances
- (4) Cells

Ans: (2)

Sol: In zero deflection condition, potentiometer draws no current.

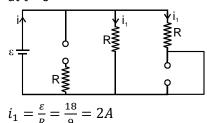
Q.25 A spherical black body with a radius of 12 cm radiates 450 watt power at 500 K. If the radius were halved and the temperature doubled, the power radiated in watt would be :-


Ans: (3)

Sol:
$$P \propto r^2T^4$$

$$\Rightarrow \frac{P_1}{P_2} = \left(\frac{r_1}{r_2}\right)^2 \left(\frac{T_1}{T_2}\right)^4$$

$$P_2 = 1800 \text{ watt}$$


Q.26 Figure shows a circuit that contains three identical resistors with resistance R = 9.0 Ω each, two identical inductors with inductance L = 2.0 mH each, and an ideal battery with emf ϵ = 18 V. The current 'i' through the battery just after the switch closed is,::-

- (1) 0.2 A
- (2) 2 A
- (3) 0 ampere
- (4) 2 mA

Ans: (2)

Sol: at
$$t = 0$$

Current through the battery is

$$I = 2i_1 = 2 \times 2 = 4A$$
 (Bonus)

OR

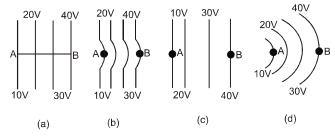
According to question language:

Capacitor is not mentioned so i = 2 A

- Q.27 Radioactive material 'A' has decay constant '8 λ ' and material 'B' has decay constant ' λ '. Initially they have same number of nuclei. After what time, the ratio of number of nuclei of material 'B' to that 'A' will be $\frac{1}{2}$?
 - $(1)\frac{1}{7\lambda}$
- $(2)\frac{1}{8\lambda}$
- (3) $\frac{1}{9\lambda}$
- $(4)^{\frac{1}{\lambda}}$

Ans: (2

Sol: $\lambda_A = 8\lambda$, $\lambda_B = \lambda$


$$\Rightarrow N_B = \frac{N_A}{e} \Rightarrow N_0 e^{-\lambda t = \frac{N_0 e^{-8\lambda t}}{e}}$$

$$\Rightarrow -\lambda t = -8\lambda t - 1 \Rightarrow 7\lambda t = -1 \Rightarrow t = -\frac{1}{7\lambda}$$

Best answer is $t = \frac{1}{7\lambda}$

Q.28 The diagrams below show regions of equipotentials:-

A positive charge is moved from A to B in each diagram.

- (1) In all the four cases the work done is the same
- (2) Minimum work is required to move q in figure (a)
- (3) Maximum work is required to move q in figure (b)
- (4) Maximum work is required to move q in figure (c)

Ans: (1)

Sol: $W = q\Delta V$

as ΔV is same in all conditions, work will be same.

- Q.29 Two astronauts are floating in gravitational free space after having lost contact with their spaceship. The two will :-
 - (1) Move towards each other
 - (2) Move away from each other
 - (3) Will become stationary
 - (4) Keep floating at the same distance between them.

Ans: (4)

Sol:

- Q.30 The x and y coordinates of the particle at any time are $x = 5t 2t^2$ and y = 10t respectively, where x and y are in meters and t in seconds. The acceleration of the particle at t = 2s is:-
 - $(1) 5 \text{ m/s}^2$
- $(2) -4 \text{ m/s}^2$
- $(3) -8 \text{ m/s}^2$
- (4)0

$$a_x = -4$$
, $a_y = 0$

$$\vec{a} = a_{x}\hat{\imath} + a_{y}\hat{\jmath}$$

$$\vec{a} = -4\hat{\imath}m/s^2$$

Q.31 One end of string of length *l* is connected to a particle of mass 'm' and the other end is connected to a small peg on a smooth horizontal table. If the particle moves in circle with speed 'v' the net force on the particle (directed towards centre) will be (T represents the tension in the string):-

(1)
$$T + \frac{mv^2}{l}$$

(2)
$$T - \frac{mv^2}{l}$$

Ans:

Sol: Net force on the particle in uniform circular motion is centripetal force, which is provided by the tension in string.

Q.32 A particle executes linear simple harmonic motion with an amplitude of 3 cm. When the particle is at 2 cm from the mean position, the magnitude of its velocity is equal to that of its acceleration. Then its time period in seconds is :-

$$(1)\frac{\sqrt{5}}{2r}$$

(2)
$$\frac{4\pi}{\sqrt{5}}$$

(3)
$$\frac{2\pi}{\sqrt{3}}$$

$$(4)\frac{\sqrt{5}}{\pi}$$

Ans: (2)

Sol: Amplitude A = 3cm

When particle is at x = 2 cm,

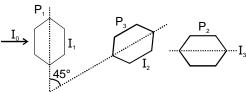
its |velocity| = |acceleration|

i.e.,
$$\omega \sqrt{A^2 - x^2} = \omega^2 x \Rightarrow \omega = \sqrt{\frac{A^2 - x^2}{x}}$$

$$T = \frac{2\pi}{\omega} = 2\pi \left(\frac{2}{\sqrt{5}}\right) = \frac{4\pi}{\sqrt{5}}$$

Q.34 Two Polaroids P_1 and P_2 are placed with their axis perpendicular to each other. Unpolarised light I_0 is incident on P_1 . A third polaroid P_3 is kept in between P_1 and P_2 such that its axis makes an angle 45° with that of P_1 . The intensity of transmitted light through P_2 is:

(1)
$$\frac{I_0}{4}$$


(2)
$$\frac{I_0}{8}$$

$$(3)\frac{I_0}{16}$$

$$(4)\frac{I_0}{2}$$

Ans:

Sol:

$$I_{1} = \frac{I_{0}}{2}$$

$$I_{2} = \frac{I_{0}}{2}\cos^{2} 45^{\circ} = \frac{I_{0}}{4}$$

$$I_{3} = \frac{I_{0}}{4}\cos^{2} 45^{\circ} = \frac{I_{0}}{8}$$

Q.34 The bulk modulus of a spherical object is 'B'. If it is subjected to uniform pressure 'p', the fractional decrease in radius is :-

$$(1)\frac{B}{3p}$$

(2)
$$\frac{3p}{B}$$

(3)
$$\frac{p}{3B}$$

$$(4)\frac{p}{R}$$

Ans: (3)

Sol:
$$B = \frac{\Delta P}{-\frac{\Delta V}{V}}, \frac{\Delta V}{V} = \frac{3\Delta R}{R}$$
$$B = \frac{\Delta P}{-\frac{3\Delta R}{R}} \Rightarrow -\frac{\Delta R}{R} = \frac{P}{3B} (\Delta P = P)$$

- Q.35 In an electromagnetic wave in free space the root mean square value of the electric field is Erms = 6V/m. The peak value of the magnetic field is:-
 - (1) 2.83×10^{-8} T
- $(2) 0.70 \times 10^{-8} \text{ T}$
- $(3) 4.23 \times 10^{-8} \text{ T}$
- $(4) 1.41 \times 10^{-8} T$

(1) Ans:

Sol:
$$E_0 = CB_0$$

$$E_{rms} = \frac{E_0}{\sqrt{2}}$$

$$\Rightarrow E_{rms}\sqrt{2} = CB_0$$

$$\Rightarrow B_0 = \frac{E_{rms}\sqrt{2}}{C} = \frac{6 \times \sqrt{2}}{3 \times 10^8} = 2.83 \times 10^{-8} T$$

- Q.36 A rope is wound around a hollow cylinder of mass 3 kg and radius 40 cm. What is the angular acceleration of the cylinder if the rope is pulled with a force of 30 N?
 - (1) 0.25 rad/s^2
- (2) 25 rad/s²
- $(3) 5 \text{ m/s}^2$
- $(4) 25 \text{ m/s}^2$

Ans: (2)

Sol:
$$\tau = I\alpha$$

$$RF = mR^2\alpha$$

$$\alpha = \frac{F}{mR} = \frac{30}{3 \times \frac{40}{100}} = 25 rad/s^2$$

Q.37 Two discs of same moment of inertia rotating about their regular axis passing through centre and perpendicular to the plane of disc with angualr velocities ω_1 and ω_2 . They are brought into contact face to face coinciding the axis of rotation. The expression for loss of energy during this process is:-

$$(1)\frac{1}{4}I(\omega_1-\omega_2)^2$$

(2)
$$I(\omega_1 - \omega_2)^2$$

$$(1)\frac{1}{4}I(\omega_1 - \omega_2)^2 \qquad (2)I(\omega_1 - \omega_2)^2 \qquad (3)\frac{1}{8}(\omega_1 - \omega_2)^2 \qquad (4)\frac{1}{2}I(\omega_1 + \omega_2)^2$$

$$(4)\frac{1}{2}I(\omega_1+\omega_2)^2$$

Ans:

Sol: COAM :
$$I\omega_1 + I\omega_2 = 2I\omega \Rightarrow \omega = \frac{\omega_1 + \omega_2}{2}$$

$$(K.E.)_i = \frac{1}{2}I\omega_1^2 + \frac{1}{2}I\omega_2^2$$

$$(K.E.)_f = \frac{1}{2} \times 2I\omega^2 = I\left(\frac{\omega_1 + \omega_2}{2}\right)^2$$

Loss in K.E. = (K.E.)_i – (K.E.)_f =
$$\frac{1}{4}(\omega_1 - \omega_2)^2$$

The photoelectric threshold wavelength of silver is 3250×10^{-10} m. The velocity of the electron Q.38 ejected from a silver surface by ultraviolet light of wavelength 2536×10^{-10} m is :-

(Given h =
$$4.14 \times 10^{-15}$$
 eVs and c = 3×10^{8} ms⁻¹)

$$(1) \approx 0.6 \times 10^6 \, \text{ms}^{-1}$$

$$(2) \approx 61 \times 10^3 \, \text{ms}^-$$

(2)
$$\approx 61 \times 10^3 \text{ ms}^{-1}$$
 (3) $\approx 0.3 \times 10^6 \text{ ms}^{-1}$ (4) $\approx 6 \times 10^5 \text{ ms}^{-1}$

$$(4)\approx 6\times 10^5~\text{ms}^{-1}$$

Ans: (2)

Sol:
$$\lambda_0 = 3250 \text{ Å}$$

$$\lambda = 2536 \text{ Å}$$

$$\frac{1}{2}mv^2 = hc\left[\frac{1}{\lambda} - \frac{1}{\lambda_0}\right]$$

$$v = \sqrt{\frac{2hc}{m} \left[\frac{1}{\lambda} - \frac{1}{\lambda_0} \right]}$$

$$= \sqrt{\frac{2 \times 12400 \times 1.6 \times 10^{-19}}{9.1 \times 10^{-31}} \left[\frac{714}{2536 \times 3250} \right]}$$

$$= 0.6 \times 10^6 \text{ m/s} = 6 \times 10^5 \text{ m/s}$$

- Q.39 A 250-Turn rectangular coil of length 2.1 cm and with 1.25 cm carries a current of 85 μ A and subjected to magnetic field of strength 0.85 T. Work done for rotating the coil by 180° against the torque is :-
 - (1) 4.55 µJ
- (2) 2.3 µJ
- (3) 1.15 µJ
- (4) 9.1 µJ

Ans: (4)

Sol: Work = $MB[\cos\theta_1 - \cos\theta_2]$

Work = $MB[\cos 0 - \cos 180^{\circ}]$

W = NiAB[1-(-1)]

 $W \simeq 9.1 \; \mu J$

- Q.40 The ratio of wavelengths of the last line of Balmer series and the last line of Lyman series is :-
 - (1) 1

(2)4

- (3) 0.5
- (4) 2

Ans: (2)

Sol: For last line of Balmer : $n_1 = 2 \& n_2 = \infty$

$$\frac{1}{\lambda_B} = RZ^2 \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right] = R(1)^2 \left[\frac{1}{2^2} - \frac{1}{\infty^2} \right]$$

$$\lambda_B = \frac{4}{R} \dots (1)$$

For last line of Lyman series : $n_1 = 1 \& n_2 = \infty$

$$\frac{1}{\lambda_L} = RZ^2 \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right] = R(1)^2 \left[\frac{1}{1^2} - \frac{1}{\infty^2} \right]$$

$$\lambda_1 = 1/R$$

...(2)

$$\frac{\lambda_B}{\lambda_L} = \frac{(4/R)}{(1/R)} = 4$$

- Q.41 A carnot engine having an efficiency of $\frac{1}{10}$ as heat engine, is used as a refrigerator. If the work done on the system is 10 J, the amount of energy absorbed from the reservoir at lower temperature is:-
 - (1) 90 J
- (2) 99 J
- (3) 100 J
- (4) 1 J

Ans: (1)

Sol:
$$\beta = \frac{Q_2}{W} = \frac{1-\eta}{\eta}$$

$$\Rightarrow \frac{Q_2}{10} = \frac{1 - 0.1}{0.1} = 9$$

$$\Rightarrow$$
 Q₂ = 9 × 10 = 90 J

- Q.42 A gas mixture consists of 2 moles of O₂ and 4 moles of Ar at temperature T. Neglecting all vibratiuonal modes, the total internal energy of the system is :-
 - (1) 15 RT
- (2) 9 RT
- (3) 11 RT
- (4) 4 RT

Ans: (3)

Sol:
$$U = \frac{f}{2}nRT$$

$$U_{total} = \frac{5}{2}(2)RT + \frac{3}{2}(4)RT$$

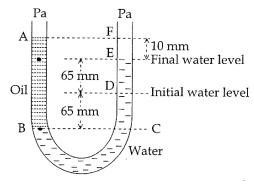
$$U_{total} = 11RT$$

Q.43 An arrangement of three parallel straight wires placed perpendicular to plane of paper carrying same current 'I' along the same direction is shown in fig. Magnitude of force per unit length on the middle wire 'B' is given by:

- $(1)\,\frac{2\mu_0 i^2}{\pi d}$
- (3) $\frac{\mu_0 i^2}{\sqrt{2}\pi d}$

Ans:

 $F = \frac{\mu_0 i_1 i_2}{2\pi d}$ =force per unit length Sol:


$$F_{1} = \frac{(\mu_{0}i)i}{2\pi d} = \frac{\mu_{0}i^{2}}{2\pi d} = F_{2}$$

$$F_{1} = \frac{(\mu_{0}i)i}{2\pi d} = F_{2}$$

$$F_{2} \text{ [due to wire C]}$$

$$F_{net} = \sqrt{F_1^2 + F_2^2} = \frac{\mu_0 i^2}{\sqrt{2}\pi d}$$

Q.44 A U tube with both ends open to the atmosphere, is partially filled with water. Oil, which is immiscible with water, is poured into one side until it stands at a distance of 10 mm above the water level on the other side. Meanwhile the water rises by 65 mm from its original level (see diagram). The density of the oil is :-

- (1) 425 kg m⁻³
- $(2) 800 \text{ kg m}^{-3}$
- (3) 928 kg m⁻³ (4) 650 kg m⁻³

Ans: (3)

Sol:

 $\rho_0 g \times 140 \times 10^{-3}$

$$= \rho_{\rm w} g \times 130 \times 10^{-3}$$

$$\rho_0 = \frac{130}{140} \times 10^3 \approx 928 kg/m^3$$

Q.45 Which of the following statements are correct?

- (a) Centre of mass of a body always coincides with the centre of gravity of the body
- (b) Central of mass of a body is the point at which the total gravitational torque on the body is zero
- (c) A couple on a body produce both translational and rotation motion in a body
- (d) Mechanical advantage greater than one means that small effort can be used to lift a large load
- (1) (a) and (b)
- (2) (b) and (c)
- (3) (c) and (d)
- (4) (b) and (d)

Ans:

(4)

Sol: Centre of mass may lie on centre of gravity net torque of gravitational pull is zero about centre of mass.

Mechanical advantage = $\frac{Load}{Effort} > 1$

⇒ Load > Effort

Q.46 Name the gas that can readily decolourise acidified KMnO₄ solution :

- (1) SO₂
- (2) NO₂
- (3) P₂O₅
- (4) CO₂

Ans: (1)

Sol: $KM \overset{+7}{n} O_4 + S\overset{+4}{O}_2 \to MnSO_4 + H_2SO_4 + K_2SO_4$

(O.A) (R.A) Colourless

Q.47 Mechanism of a hypothetical reaction

 $X_2 + Y_2 \rightarrow 2XY$ is given below :-

- (i) $X_2 \rightarrow X + X(fast)$
- (ii) $X + Y_2 \rightleftharpoons XY + Y(slow)$
- (iii) $X + Y \rightarrow XY(fast)$

The overall order of the reaction will be :-

- (1) 2
- (2) 0
- (3) 1.5

(4) 1

Ans: (3)

Sol: According to law of mass action

- $r = K[X][Y_2]$
- ...(1)

From fast step-1

$$K_{eq} = \frac{[X]^2}{[X_2]}$$

$$[X]^2 = K_{eq.}[X_2]$$

$$[X] = \sqrt{K_{eq}}[X_2]^{1/2}$$
 ...(2)

From equation (1) & (2)

$$r = K\sqrt{K_{eq.}}[X_2]^{1/2}[Y_2]$$

Overall order of reaction = 1 + 0.5 = 1.5

- Q.48 The element Z = 114 has been discovered recently. It will belong to which of the following family/group and electronic configuration?
 - (1) Carbon family, [Rn] 5f¹⁴ 6d¹⁰ 7s² 7p²
- (2) Oxygen family, [Rn] $5f^{14} 6d^{10} 7s^2 7p^4$
- (3) Nitrogen family, [Rn] 5f¹⁴ 6d¹⁰ 7s² 7p⁶
- (4) Halogen family, [Rn] 5f14 6d10 7s2 7p5

Ans: (1)

Sol: $Z = 114[Rn]^{86}7s^25f^{14}6d^{10}7p^2$

14th gp. (carbon family)

- Q.49 The heating of phenyl-methyl ethers with HI produces
 - (1) iodobenzene
- (2) phenol
- (3) benzene
- (4) ethyl chlorides

Ans: (2)

Sol:

Q.50 Which one is the correct order of acidity?

(1)
$$CH \equiv CH > CH_3 - C \equiv CH > CH_2 = CH_2 > CH_3 - CH_3$$

(2)
$$CH \equiv CH > CH_2 = CH_2 > CH_3 - C \equiv CH > CH_3 - CH_3$$

(3)
$$CH_3 - CH_3 > CH_2 = CH_2 > CH_3 - C \equiv CH > CH \equiv CH$$

(4)
$$CH_2 = CH_2 > CH_3 - CH = CH_2 > CH_3 - C \equiv CH > CH \equiv CH$$

Ans: (1)

Sol: Correct order of acidic strength ⇒

$$CH \equiv CH > CH_3 - C \equiv CH > CH_2 = CH_2 > CH_3 - CH_3$$

acc. to EN and Inductive effect.

Predict the correct intermediate and product in the following reaction :-Q.51

$$H_{3}C-C \equiv CH \xrightarrow{H_{2}O,H_{2}SO_{4}} \xrightarrow{HgSO_{4}} Intermediate \xrightarrow{(A)} product$$

Ans: (3)

Sol:

$$CH_{3}-C\equiv CH\xrightarrow{H_{2}O,\ H_{2}SO_{4}}CH_{3}-C=CH_{2}$$

$$OH$$

$$CH_{3}-C=CH_{2}$$

$$OH$$

$$CH_{3}-C-CH_{3}$$

$$OH$$

Q.52 The equilibrium constant of the following are :-

$$N_2 + 3H_2 \rightarrow 2NH_3$$
 ; K_1

$$N_2 + O_2 \rightarrow 2NO$$
 ; K_2

$$H_2 + \frac{1}{2}O_2 \to H_2O$$
 ; K_3

The equilibrium constant (K) of the reaction:

$$2NH_3 + \frac{5}{2}O_2 \xrightarrow{\quad K \quad} 2NO + 3H_2O, \text{ will be :-}$$

(1)
$$K_2 K_3^3 / K_1$$
 (2) $K_2 K_3 / K_1$

$$(2) K_2 K_3 / K_1$$

(3)
$$K_2^3 K_3 / K_1$$
 (4) $K_1 K_3^3 / K_2$

$$(4) K_1 K_2^3 / K_2$$

Ans:

Sol:
$$N_2 + 3H_2 \rightarrow 2NH_3$$
 ; K_1 ...(1)

$$N_2 + O_2 \rightarrow 2NO$$
 ; K_2 ...(2)

$$H_2 + \frac{1}{2}O_2 \longrightarrow H_2O$$
 ; K_3 ...(3)

For reaction

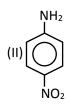
$$2NH_3 + \frac{5}{2}O_2 \stackrel{\kappa}{=} 2NO + 3H_2O \quad ...(4)$$

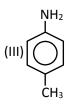
$$eq^{n}$$
. (4) = eq^{n} .(2) + 3 × eq^{n} .(3) – eq^{n} .(1)

$$\Rightarrow K = \frac{K_2 \cdot K_3^3}{K_1}$$

Q.53 Which one is the most acidic compound?

Ans:


$$O_2N$$
 O_2
 O_2
 O_3

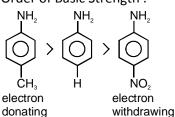

Sol:

More -I, -M, more acidic

Q.54 The correct increasing order of basic strength for the following compounds is :-

(1) | || < | < ||

(2) | | | < | < |


(3) II < I < III

(4) | | < | | | < |

Ans: (3)

Sol:

Order of Basic Strength:-

Q.55 Ionic mobility of which of the following alkali metal ions is lowest when aqueous solution of their salts are put under an electric field?

(1) K

(2) Rb

(3) Li

(4) Na

Ans: (3)

Sol:

 $Ionic mobility \propto \frac{-}{size of hydrated ion}$

Smaller size hydrated ion in aq. solⁿ – Rb⁺(aq)

Larger size hydrated ion in aq. solⁿ – Li⁺(aq)

Lowest ionic mobility in aq. solⁿ → Li⁺(aq) due to high hydration

Q.56 The most suitable method of separation of 1:1 mixture of ortho and para-nitrophenols is:-

(1) Chromatography

(2) Crystallisation

(3) Steam distillation

(4) Sublimation

Ans:

Sol: The ortho and para isomers can be separated by steam distillation o-Nitrophenol is steam volatile due to intramolecular hydrogen bonding while p-nitro phenol is less volatile due to intermolecular hydrogen bonding which cause association of molecule.

 $HgCl_2$ and I_2 both when dissolved in water containing I^- ions the pair of species formed is :-Q.57

- (1) HgI₂, I⁻
- (2) HgI_4^{2-} , I_3^-
- (3) Hg₂l₂, I⁻
- (4) HgI_2, I_3^-

Ans: (2)

Sol:

$$\begin{array}{c} \mathsf{HgCl_2} + 2 \ \mathsf{I}^{\scriptscriptstyle{-}} \longrightarrow \mathsf{HgI_2} + 2 \mathsf{C} \ell^{\scriptscriptstyle{-}} \\ & \downarrow + 2 \mathsf{I}^{\scriptscriptstyle{-}} \\ [\mathsf{HgI_4}]^{-2} \end{array}$$

Soluble complex

$$I_2 + I^- \longrightarrow I_3^-$$

water soluble

Q.58 Mixture of chloroxylenol and terpineol acts as:

- (1) Antiseptic
- (2) antipyretic
- (3) antibiotic
- (4) analgesic

Ans: (1)

Sol:

Antiseptic (dettol)

Q.59 An example of a sigma bonded organometallic compound is :-

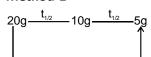
- (1) Grignard's reagent (2) Ferrocene
- (3) Cobaltocene
- (4) Ruthenocene

Ans: (1)

Sol:

A first order reaction has a specific reaction rate of 10⁻² sec⁻¹. How much time will it take for 20g of Q.60 the reactant to reduce to 5g?

- (1) 138.6 sec
- (2) 346.5 sec
- (3) 693.0 sec
- (4) 238.6 sec


Ans: (1)

Sol:

Half life of first order reaction $t_{1/2} = \frac{0.693}{K}$

$$=\frac{0.693}{10^{-2}}=69.3sec$$

Method-1

Total time = $2t_{1/2}$ = $2 \times 69.3 = 138.6$ sec

Method-2

$$t = \frac{2.303}{K} log \frac{[A]_o}{[A]_t}$$

$$t = \frac{2.303}{10^{-2}} log \frac{20}{5} \Rightarrow t = 138.6 sec(Option1)$$

Match the interhalogen compounds of column-I with the geometry in column-II and assign the Q.61 correct. code.

	Column-I		Column-II
(a)	XX'	(i)	T-shape
(b)	XX' ₃	(ii)	Pentagonal bipyramidal
(c)	XX' ₅	(iii)	Linear
(d)	XX' ₇	(iv)	Square-pyramidal
		(v)	Tetrahedral

Code:

- (a)
- (b)
- (c)
- (d)

(1) (iii) (i) (iv)

(2) (v) (iv) (iii) (ii) (3) (iv) (iii) (ii) (i)

(4) (iii) (iv) (i) (ii)

Ans: (1)

Sol: $XX' \Rightarrow Linear$

 $XX_3 \Rightarrow T - \text{shape sp}^3 d$

 $XX_5 \Rightarrow Square pyramidal sp^3d^2$

 $XX_7 \Rightarrow Pentagonal bipyramidal (sp³d³)$

Q.62 Concentration of the Ag^+ ions in a saturated solution of $Ag_2C_2O_4$ is 2.2×10^{-4} mol L^{-1} . Solubility product of $Ag_2C_2O_4$ is :-

(ii)

(1) 2.66×10^{-12}

 $(2) 4.5 \times 10^{-11}$

 $(3) 5.3 \times 10^{-12}$

 $(4) 2.42 \times 10^{-8}$

Ans: (3)

Sol: $Ag_2C_2O_4 \rightleftharpoons 2Ag^+ + C_2O_4^{2-}$

 $2.2 \times 10^{-4} \,\mathrm{M}$ $1.1 \times 10^{-4} \,\mathrm{M}$

 $K_{sp} = [Ag^+]^2 [C_2 O_4^{2-}]$

= $[2.2 \times 10^{-4}]^2$. $[1.1 \times 10^{-4}]$

 $K_{sp} = 5.3 \times 10^{-12}$

Q.63 In the electrochemical cell :- Zn | ZnSO $_4$ (0.01 M) | | CuSO $_4$ (1.0 M) | Cu,

the emf of this Daniel cell is E_1 . When the concentration of ZnSO₄ is changed to 1.0M and that of CuSO₄ changed to 0.01 M, the emf changes to E_2 . From the followings, which one is the relationship between E_1 and E_2 ? (Given, $\frac{RT}{F} = 0.059$)

(1) $E_1 < E_2$

(2) $E_1 > E_2$

(3) $E_2 = 0 \neq E_1$

(4) $E_1 = E_2$

Ans: (2)

Sol: For cell

 $Zn|ZnSO_4(0.01M)||CuSO_4(1M)|Cu$

Cell reaction \rightarrow Zn + Cu⁺² \longrightarrow Zn⁺² + Cu

 $E_1 = E^{\circ} - \frac{0.059}{2} log \frac{Zn^{+2}}{Cu^{+2}}$

 $E_1 = E^{\circ} - \frac{0.059}{2} log \frac{0.01}{1}$

 $= E^{\circ} - \frac{0.59}{2} log \frac{1}{100}$...(1)

For cell

 $Zn|ZnSO_4(1M)||CuSO_4(0.01M)|Cu$

 $E_2 = E^{\circ} - \frac{0.059}{2} log \frac{1}{0.01}$

 $= E^{\circ} - \frac{0.059}{2} log 100$...(2)

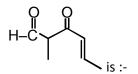
 $E_1 > E_2$

Q.64 Which of the following pairs of compounds is isoelectronic and isostructrual?

(1) TeI_2 , XeF_2 (2) IBr_2^- , XeF_2

(3) IF₃, XeF₂

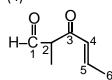
(4) BeCl₂, XeF₂


Ans: (2)

Sol: $IBr_2^{-1}\&XeF_2$ are is o-structural

(Linear shape)

and Both C.A. consist of same no. of valence e-s


Q.65 The IUPAC name of the compound

(1) 5-formylhex-2-en-3-one

- (2) 5-methyl-4-oxohex-2-en-5-al
- (3) 3-keto-2-methylhex-5-enal
- (4) 3-keto-2-methylhex-4-enal

Ans:

Sol:

3-keto-2-methylhex-4-en-1-al

Q.66 Which one is the wrong statement?

- (1) The uncertainty principle is $\Delta E \times \Delta t \ge h/4\pi$
- (2) Half filled and fully filled orbitals have greater stability due to greater exchange energy, greater symmetry and more balanced arrangement.
- (3) The energy of 2s orbital is less than the energy of 2p orbital in case of Hydrogen like atoms
- (4) de-Broglies's wavelength is given by $\lambda = \frac{h}{mv}$, where m = mass of the particle, v = group velocity of the particle

Ans: (3)

Sol: In H-like atom energy of 2s = 2p, orbital

Incorrect statement is (3)

Q.67 Which is the incorrect statement?

- (1) Density decreases in case of crystals with Schotky's defect.
- (2) NaCl(s) is insulator, silicon is semiconductor, silver is conductor, quartz is piezo electric crystal
- (3) Frenkel defect is favoured in those ionic compounds in which sizes of cation and anions are almost equal
- (4) FeO_{0.98} has non stoichiometric metal deficiency defect

Ans: (3,4

Sol: In frenkel defect the radius of cation must be very less than anion.

Incorrect statement is (3)

Q.68 The species, having bond angles of 120° is:

(1) CIF₃

(2) NCl₃

(3) BCl₃

(4) PH₃

Ans: (3)

Sol:

$$BCI_3 \Rightarrow CI \xrightarrow{120^{\circ}} C$$

Cl Regular geometry

Hybridysation sp²

Q.69 For a given reaction, $\Delta H = 35.5 \text{ kJ mol}^{-1}$ and $\Delta S = 83.6 \text{ JK}^{-1} \text{ mol}^{-1}$. The reaction is spontaneous at : (Assume that ΔH and ΔS do not vary with temperature)

- (1) T > 425 K
- (2) All temperature
- (3) T > 298 K
- (4) T < 425 K

Ans: (1)

Sol: for equilibrium $\Delta G = 0$

$$\Delta H = T\Delta S$$

$$T_{eq.} = \frac{\Delta H}{\Delta S} = \frac{35.5 \times 1000}{83.6} = 425K$$

Since the reaction is endothermic, it will be spontaneous at T > 425 K. Option (1)

- Q.70 Which of the following is a sink for CO?
 - (1) Micro organism present in the soil
- (2) Oceans

(3) Plants

(4) Haemoglobin

Ans: (1)

Sol: Microorganism present in the soil.

- Q.71 If molality of the dilute solutions is doubled, the value of molal depression constant (K_f) will be :-
 - (1) halved
- (2) tripled
- (3) unchanged
- (4) doubled

Ans: (3)

Sol: K_f does not depend on concentration of solution.

It only depends on nature of solvent so it will be unchanged. option (3)

- Q.72 Which of the following is dependent on temperature?
 - (1) Molarity
- (2) Mole fraction
- (3) Weight percentage (4) Molality

Ans: (1)

Sol: Temperature dependent unit is molarity.

- Q.73 Which one of the following statements is not correct?
 - (1) The value of equilibrium constant is changed in the presence of a catalyst in the reaction at equilibrium
 - (2) Enzymes catalyse mainly bio-chemical reactions
 - (3) Coenzymes increase the catalytic activity of enzyme
 - (4) Catalyst does not initiate any reaction

Ans:

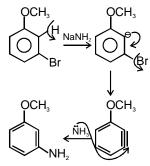
Sol: Equilibrium constant is not affected by presence of catalyst hence statement (1) is incorrect.

Q.74 Identify A and predict the type of reaction

and elimination addition reaction (2)

and cine substitution reaction

QCH₃


(4)

and cine substitution reaction

'NH₂and substitution reaction

Ans:

Sol:

Example of substitution reaction.

- Q.75 The correct order of the stoichiometries of AgCl formed when AgNO₃ in excess is treated with the complexes: CoCl₃.6NH₃, CoCl₃.5NH₃, CoCl₃.4NH₃ respectively is:-
 - (1) 3 AgCl,1 AgCl,2 AgCl

(2) 3 AgCl,2 AgCl,1 AgCl

(3) 2 AgCl,3 AgCl,1 AgCl

(4) 1 AgCl,3 AgCl,2 AgCl

Ans: (2

Sol:
$$[CO(NH_3)_6]Cl_3 \xrightarrow{AgNO_3} 3molAgCl$$

$$[CO(NH_3)_5]Cl_2 \xrightarrow{AgNO_3} 2molAgCl$$

$$[CO(NH_3)_4Cl_2]Cl \xrightarrow{AgNO_3} 1molAgCl$$

- Q.76 The correct statement regarding electrophile is:-
 - (1) Electrophile is a negatively charged species and can form a bond by accepting a pair of electrons from another electrophile
 - (2) Electrophiles are generally neutral species and can form a bond by accepting a pair of electrons from a nucleophile
 - (3) Electrophile can be either neutral or positively charged species and can form a bond by accepting a pair of electrons from a nucleophile
 - (4) Electrophile is a negatively charged species and can form a bond by accepting a pair of electrons from a nucleophile

Ans: (3)

Sol: Electrophile can be either neutral or positively charged species and can form a bond by accepting a pair of electron from a nucleophile.

Q.77 A gas is allowed to expand in a well insulated container against a constant external pressure of 2.5 atm from an initial volume of 2.50 L to a final volume of 4.50 L. The change in internal energy ΔU of the gas in joules will be :-

Ans: (2)

Sol: Work done in irreversible process

$$W = -P_{ext} \Delta V$$

$$= -2.5[4.5 - 2.5] = -5 L atm$$

$$= -5 \times 101.3 J = -505 J$$

Since system is well insulated q = 0

By FLOT
$$\Delta E = q + W$$

$$\Delta E = W = -505 J$$
 Option (2)

Q.78 Which of the following reactions is appropriate for converting acetamide to methanamine?

- (1) Hoffmann hypobromamide reaction
- (2) Stephens reaction
- (3) Gabriels phthalimide synthesis
- (4) Carbylamine reaction

Ans:

Sol:
$$CH_3$$
- $C-NH_2$ $\xrightarrow{Br_2/4KOH}$ $CH_3 - NH_2 + 2KBr + K_2CO_3$

This reaction is known as hoffmann hypobromamide reaction.

Q.79 With respect to the conformers of ethane, which of the following statements is true?

- (1) Bond angle changes but bond length remains same
- (2) Both bond angle and bond length change
- (3) Both bond angles and bond length remains same
- (4) Bond angle remains same but bond length changes

Ans: (3)

In conformation bond angle and bond length remain same. Sol:

Q.80 In which pair of ions both the species contain S-S bond?

$$(1) S_4 O_6^{2-}, S_2 O_3^{2-}$$

$$(2) S_2 O_7^{2-} S_2 O_8^{2-}$$

(1)
$$S_4 O_6^{2-}$$
, $S_2 O_3^{2-}$ (2) $S_2 O_7^{2-}$, $S_2 O_8^{2-}$ (3) $S_4 O_6^{2-}$, $S_2 O_7^{2-}$ (4) $S_2 O_7^{2-}$, $S_2 O_3^{2-}$

(4)
$$S_2O_7^{2-}$$
 , $S_2O_3^{2-}$

Ans:

$$\text{Sol:} \qquad S_4 O_6^{2-} \Rightarrow \begin{array}{c} \text{\scriptsize O} & \text{\scriptsize O} \\ \text{\scriptsize I} & \text{\scriptsize O} \\ \text{\scriptsize O} & \text{\scriptsize I} \\ \text{\scriptsize O} & \text{\scriptsize O} \end{array}$$

$$S_2O_3^{2-} \Rightarrow O_0^{1-}$$

Q.81 It is because of inability of ns² electrons of the valence shell to participate in bonding that :-

- (1) Sn²⁺ is oxidising while Pb⁴⁺ is reducing (2) Sn²⁺ and Pb²⁺ are both oxidising and reducing
- (3) Sn⁴⁺ is reducing while Pb⁴⁺ is oxidising (4) Sn²⁺ is reducing while Pb⁴⁺ is oxidising

(4) Ans:

Sn⁺² \rightarrow Sn⁺⁴ Sol:

(R.A)
$$Sn^{+2} < Sn^{+4}$$
 Stability order

 $Pb^{+4} \longrightarrow Pb^{+2}$

(O.A)
$$Pb^{+2} > Pb^{+4}$$
 Stability order

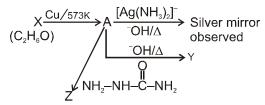
(Inert pair effect)

Q.82 Correct increasing order for the wavelengths of absorption in the visible region the complexes of Co³⁺ is :-

- (1) $[Co(H_2O)_6]^{3+}$, $[Co(en)_3]^{3+}$, $[Co(NH_3)_6]^{3+}$
- (2) $[Co(H_2O)_6]^{3+}$, $[Co(NH_3)_6]^{3+}$, $[Co(en)_3]^{3+}$
- (3) $[Co(NH_3)_6]^{3+}$, $[Co(en)_3]^{3+}$, $[Co(H_2O)_6]^{3+}$ (4) $[Co(en)_3]^{3+}$, $[Co(NH_3)_6]^{3+}$, $[Co(H_2O)_6]^{3+}$

(4) Ans:

Sol:
$$\left[E_a \propto \frac{1}{\lambda_a}\right]$$


Where $E_a \Rightarrow$ absorbed energy (splitting energy)

 $\lambda_a \Rightarrow$ absorbed wavelength

Presence of SFL \Rightarrow E_a (\uparrow) λ _a(\downarrow)

 $H_2O < NH_3 < en$ ligand strength \uparrow spliting energy \uparrow so absorbed $\lambda \downarrow$

Q.83 Consider the reactions:-

Identify A, X, Y and Z

- (1) A-Methoxymethane, X-Ethanol, Y-Ethanoic acid, Z-Semicarbazide.
- (2) A-Ethanal, X-Ethanol, Y-But-2-enal, Z-Semicarbazone
- (3) A-Ethanol, X-Acetaldehyde, Y-Butanone, Z-Hydrazone
- (4) A-Methoxymethane, X-Ethanoic acid, Y-Acetate ion, Z-hydrazine

Ans: (2)

$$\begin{array}{c} (X) \\ CH_{3}-CH_{2}-OH \xrightarrow{Cu/300^{\circ}C} CH_{3}-CH=O \xrightarrow{[Ag(NH_{3})_{3}]^{+}} Silver \\ \text{Ethanol} & \text{Ethanol} & \text{mirror} \\ \text{Observed} \\ CH_{3}-CH=N-NH-C-NH_{2} & NH_{2}-NH-C-NH_{2} & CH_{3}-CH=CH-CH=O \\ (Z) & NH_{2}-NH-C-NH_{2} & (Y) & (Y) \\ \end{array}$$

Sol:

Q.84 Of the following, which is the product formed when cyclohexazone undergoes aldol condensation followed by heating?

Ans:

Sol:

Mechanism

- Q.85 Which of the following pairs of species have the same bond order?
 - (1) O₂, NO⁺
- (2) CN⁻, CO
- (3) N_2 , O_2^-
- (4) CO, NO

Ans: (2)

Sol: Total no. of electrons = CN⁻ is 14

Total no. of electrons in CO is also 14

hence B.O. of both CN⁻& CO is 3

Q.86 Extraction of gold and silver involes leaching with CN⁻ ion. Silver is later recovered by :-

(1) distillation

(2) zone refining

(3) displacement with Zn

(4) liquation

Ans: (3)

Sol: Mac arther forest process/cyanide process

$$\begin{array}{c} Ag_2S + 4NaCN \xrightarrow{O_2} 2Na[Ag(CN)_2] + Na_2SO_4 \\ 2Na[Ag(CN)] \xrightarrow{Zn} Na[Zn(CN)_4] + Ag(\downarrow) \\ & \text{Soluble complex} \end{array}$$

Ag extracts by displacement with Zn.

Q.87 A 20 litre container at 400 K contains CO₂(g) at pressure 0.4 atm and an excess of SrO (neglect the volume of solid SrO). The volume of the container is now decreased by moving the movable piston fitted in the container. The maximum volume of the container, when pressure of CO2 attains its maximum value, will be :-

(Given that : $SrCO_3(s) \rightleftharpoons SrO(s) + CO_2(g)$

 $K_p = 1.6 \text{ atm}$

- (1) 10 litre
- (2) 4 litre
- (3) 2 litre
- (4) 5 litre

Ans: (4)

Sol: $SrCO_3(s) \rightleftharpoons SrO(s) + CO_2(g)$

$$K_p = P_{CO2}$$

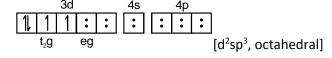
maximum pressure of $CO_2 = 1.6$ atm

$$P_1V_1 = P_2V_2$$

 $0.4 \times 20 = 1.6 V_2$

 $V_2 = 5L$.

Q.88 Pick out the correct statement with respect to [Mn(CN)₆]³⁻:-


- (1) It is sp³d² hybridised and tetrahedral (2) It is d²sp³ hybridised and octahedral
- (3) It is dsp² hybridised and square planar (4) It is sp³d² hybridised and octahedral

Ans:

Sol: $[Mn(CN)_6]^{3-} \rightarrow O.S.$ of Mn is (+3)

$$C.N. = 6$$

Presence of SFL (Pairing is possible)

- Q.89 The reason for greater range of oxidation states in actinoids is attributed to :-
 - (1) actinoid contraction
 - (2) 5f, 6d and 7s levels having comparable energies
 - (3) 4f and 5d levels being close in energies
 - (4) the redioactive nature of actinoids

Ans: (2)

Sol: Minimum energy gap between

5f, 6d & 7s subshell. Thats why e⁻ exitation will be easier.

Q.90	 (1) Ovalbumin is a simple food reserve in egg-white (2) Blood proteins thrombin and fibrinogen are involved in blood clotting (3) Denaturation makes the proteins more active (4) Insulin maintains sugar level in the blood of a human body 					
Ans: Sol:	(3) Denaturation change	es the structure of a prote	ein and protein loose it	s activity.		
Q.91	(1) Holoenzyme = Ap	lowing statements is corr poenzyme + Coenzyme penzyme + Co-factor	ect with reference to enzymes? (2) Coenzyme = Apoenzyme + Holoenzyme (4) Apoenzyme = Holoenzyme + Coenzyme			
Ans: Sol:	(1)					
Q.92 Ans: Sol:	A decrease in blood (1) Atrial natriuretic (3) ADH (1)	pressure / volume will no factor	ot cause the release of : (2) Aldosterone (4) Renin	-		
Q.93 Ans: Sol:	Which cells of "Crypt (1) Paneth cells (1)	ts of Lieberkuhn" secrete (2) Zymogen cells	antibacterial lysozyme (3) Kupffer cells	? (4) Argentaffin cells		
Q.94 Ans: Sol:	Which of the followi (1) Proteins (3)	ng are not polymeric? (2) Polysaccharides	(3) Lipids	(4) Nucleic acids		
Q.95 Ans: Sol:	Functional megaspo (1) Endosperm (2)	re in an angiosperm deve (2) Embryo sac	lops into ? (3) Embryo	(4) Ovule		
Q.96 Ans: Sol:	Myelin sheath is pro (1) Astrocytes and So (3) Osteoclasts and A (4)	chwann cells	(2) Oligodendrocyte (4) Schwann cells ar	es and Osteoclasts nd Oligodendrocytes		
Q.97 Ans: Sol:	Attractants and rewa (1) Entomophily (1)	ards are required for : (2) Hydrophily	(3) Cleistogamy	(4) Anemophily		

Q.98	Receptor sites for neurotransmitters are present on :					
	(1) Pre-synaptic memb(3) Post-synaptic mem		(2) Tips of axons(4) Membrane of syna	ptic vesicles		
Ans: Sol:	(3)					
Q.99	Coconut fruit is a:	(2) No. +	(2) Compula	(4) Duine		
Ans: Sol:	(1) Berry (4)	(2) Nut	(3) Capsule	(4) Drupe		
Q.100	explanation for this feat (a) They do not need to (b) They are somatic co (c) They do not metabo (d) All their internal spa	ature ? o reproduce ells olize ace is available for oxyg	gen transport	nt(s) is/are most appropriate		
Ans: Sol:	(1) only (a) (4)	(2) (a), (c) and (d)	(3) (b) and (c)	(4) only (d)		
Q.101	Capacitation occurs in:		(2) \ (\)			
Ans: Sol:	(1) Epididymis(3) Female reproductiv(3)	e tract	(2) Vas deferens(4) Rete testis			
Q.102	Which of the following	are found in extreme s	aline conditions?			
Ans: Sol:	(1) Eubacteria(4)	(2) Cyanobacteria	(3) Mycobacteria	(4) Archaebacteria		
Q.103	Asymptote in a logistic	growth curve is obtain	ed when :			
	(1) K = N (3) K < N		(2) K > N (4) The valueof 'r' app	roaches zero		
Ans: Sol:	(1)					
	(1) Directional as it pus(2) Disruptive as it spling output(3) Stabilizing followed(4) Stabilizing selection	shes the mean of the che ts the population into by disruptive as it stab		ts:- output and the other lower roduce higher yielding cows		
Ans: Sol:	(1)					

Q.105 Ans: Sol:	Select the mismatch: (1) Rhodospirillum – M (3) Rhizobium – Alfalfa (1)	ycorrhiza	(2) Anabaena – Nitroge (4) Frankia – Alnus	en fixer	
Q.106	Select the best option of (a) Vitamin A derivative (b) The photopigments (c) Retinal is a derivative	n adequate intake of car from the following state es are formed from carot are embeded in the me re of Vitamin A sorbing part of all the vis	ments tene mbrane discs of the inne	er segment	
Ans: Sol:	(1) (a), (c) and (d) (1)	(2) (a) and (c)	(3) (b), (c) and (d)	(4) (a) and (b)	
Q.107 Ans: Sol:	The DNA fragments sep (1) Acetocarmine (3)	parated on an agarose ge		staining with : (4) Bromophenol blue	
Q.108 Ans: Sol:	The hepatic portal vein (1) Stomach (3)	drains blood to liver fro (2) Kidneys	m : (3) Intestine	(4) Heart	
Q.109 Ans: Sol:	The vascular cambium (1) Primary phloem (2)	normally gives rise to : (2) Secondary xylem	(3) Periderm	(4) Phelloderm	
Q.110 Ans: Sol:	Thalassemia and sickle cell anemia are caused due to a problem in globin molecule synthesis Select the correct statement: (1) Both are due to a quantitative defect in globin chain synthesis (2) Thalassemia is due to less synthesis of globin molecules (3) Sickel cell anemia is due to a quantitative problem of globin molecules (4) Both are due to a qualitative defect in globin chain synthesis (2)				
Q.111	,	oes and phenotypes are	_	types of their children, how	

(3) 4 genotypes : 4 phenotypes

(4) 3 genotypes : 3 phenotypes

Ans: Sol:	(2)		
Q.112 Ans: Sol:	Which of the following facilitates opening of sta (1) Decrease in turgidity of guard cells (2) Radial orientation of cellulose microfibrils in (3) Longitudinal orientation of cellulose microfia (4) Contraction of outer wall of guard cells (2)	n the cell wall of guard co	
Q.113	In Bougainvillea thorns are the modifications o	f:	
Ans: Sol:	(1) Adventitious root (2) Stem(2)	(3) Leaf	(4) Stipules
Q.114	Which one of the following is related to Ex-situ (1) Biodiversity hot spots (3) Himalayan region	conservation of threate (2) Amazon rainforest (4) Wildlife safari parks	·
Ans: Sol:	(4)		
Q.115	Root hairs develop from the region of: (1) Elongation (3) Meristematic activity	(2) root cap (4) Maturation	
Ans: Sol:	(4)		
Q.116	A disease caused by an autosomal primary non	-disjunction is :-	
	(1) Klinefelter's Syndrome	(2) Turner's Syndrome	
Ans: Sol:	(3) Sickel Cell Anemia (4)	(4) Down's Syndrome	
Q.117	The water potential of pure water is :-		
	(1) Less than zero	(2) More than zero but	t less than one
Ans: Sol:	(3) More than one(4)	(4) Zero	
Q.118	Which of the following options gives the correct (1) Condensation → nuclear membrane disast division → segregation → telophase	•	_
	(2) Condensation → crossing over → nuclear m	· · · · · · · · · · · · · · · · · · ·	
	(3) Condensation → arrangement at equator →		
	THE CONCENSATION -> NUCLEAR MEMORANE DISASSE	ATTION -> CROSSING OVAR ->	ASCHOOLE IN THE CONTROL OF

Ans: (1)

Sol:

Q.119 The process of separation and purification of expressed protein before marketing is called:

(1) Downstream processing

(2) Bioprocessing

(3) Postproduction processing

(4) Upstream processing

(1) Ans:

Sol:

Q.120 A temporary endocrine gland in the human body is:

- (1) Corpus cardiacum (2) Corpus luteum
- (3) Corpus allatum
- (4) Pineal gland

Ans: (2)

Sol:

Q.121 Which of the following is made up of dead cells?

- (1) Collenchyma
- (2) Phellem
- (3) Phloem
- (4) Xylem parenchyma

Ans: (2)

Sol:

Q.122 An example of colonial alga is :-

- (1) Volvox
- (2) Ulothrix
- (3) Spirogyra
- (4) Chlorella

Ans: (1)

Sol:

Q.123 Match the following sexually transmitted diseases (Column-1) with their causative agent (Column-II) and select the correct option:

Gonorrhea	(i)	HIV
Syphilis	(ii)	Neisseria
Genital Warts	(iii)	Treponema
AIDS	(iv)	Human papilloma-Virus
(Syphilis Genital Warts AIDS	Syphilis (ii) Genital Warts (iii) AIDS (iv)

	(a)	(b)	(c)	(d)
(1)	iii	iv	i	ii
(2)	iv	ii	iii	i
(3)	iv	iii	ii	i
(4)	ii	iii	iv	i

Ans:

(4)

Sol:

Q.124 The function of copper ions in copper releasing IUD's is :-

- (1) They inhibit gametogenesis
- (2) They make uterus unsuitable for implantation
- (3) They inhibit ovulation
- (4) They suppress sperm motility and fertilising capacity of sperms

Ans: (4)

Sol:

Q.123	(1) S	_	•		
	(1) Secondary treatme	nt	(2) Primary treatme		
	(3) Sludge treatment		(4) Tertiary treatment		
Ans:	(2)				
Sol:					
Q.126	An important characte	ristic that Hemichordat	es share with Chordate	es is:	
	(1) Ventral tubular ner		(2) Pharynx with gill		
	(3) Pharynx, without gi	ll slits	(4) Absence of noto		
Ans:	(2)				
Sol:					
Q.127	•	_	•		
	(1) Hershey and Chase		(2) Avery, Mcleod a	nd McCarty	
Ans:	(3) Hargobind Khorana(1)		(4) Griffith		
Sol:	(1)				
50					
Q.128	Among the following of	characters, which one	was not considered by	Mendel in his experiments on	
	pea?				
	(1) Trichomes – Glandu	ılar or non-glandular	(2) Seed – Green or Yellow		
	(3) Pod – Inflated or Co	onstricted	(4) Stem – Tall or Dv	varf	
Ans:	(1)				
Sol:					
Q.129	Plants which produce of	characteristic nneumate	onhors and show viving	ary helong to:	
Q.123	(1) Halophytes	(2) Psammophytes	(3) Hydrophytes	(4) Mesophytes	
Ans:	(1)	(2) i saiiiiiopiiytes	(3) Hydrophlytes	(+) Wesophytes	
Sol:	(-)				
Q.130	The pivot joint betwee	n atlast and axis is a typ	pe of :		
	(1) Cartilaginous joint	(2) Synovial joint	(3) Saddle joint	(4) Fibrous joint	
Ans:	(2)				
Sol:					
Q.131	With reference to fact	ors affecting the rate of	f photosypthosis, which	n of the following statements is	
Q.131	not correct?	ors affecting the rate of	i priotosynthesis, willer	Tor the following statements is	
	(1) Increasing atmosph	eric CO₂ concentration	up to 0.05% can enhar	nce CO₂ fixation rate	
	(2) C ₃ plants respond t	to higher temperatures	s with enhanced photo	osynthesis while C4 plants have	
	much lower tempe	rature optimum			
	(3) Tomato is a greenh	ouse crop which can be	e grown in CO ₂ -enriche	d atmosphere for higher yield	
	(4) Light saturation for	CO ₂ fixation occurs at 3	10% of full sunlight		
Ans:	(2)				
Sol:					

Q.132	DNA fragments are: (1) Negatively charged (2) Neutral (3) Either positively or negatively charged depe (4) Positively charged	nding on their size
Ans: Sol:	(1)	
Q.133	Which of the following components provides st (1) Nuclear membrane (2) Plasma membrane	•
Ans: Sol:	(3)	
Q.134	 Which of the following options best represents (1) amylase, pepsin, trypsinogen, maltase (2) peptidase, amylase, pepsin, rennin (3) lipase, amylase, trypsinogen, procarboxypep (4) amylase, peptidase, trypsinogen, rennin 	
Ans: Sol:	(3)	
Q.135	Which among these is the correct combination (1) Dolphins, Seals, <i>Trygon</i> (3) <i>Trygon</i> , Whales, Seals	of aquatic mammals? (2) Whales, Dolphins, Seals (4) Seals, Dolphins, Sharks
Ans: Sol:	(2)	
Q.136	Fruit and leaf drop at early stages can be preve (1) Ethylene (2) Auxins	nted by the application of : (3) Gibberellic acid (4) Cytokinins
Ans: Sol:	(2)	
Q.137	Select the correct route for the passage of sper (1) Testes → Vasa efferentia → Kidney → Semin (2) Testes → Vasa efferentia → Bidder's canal – (3) Testes → Vasa efferentia → Kidney → Bidder (4) Testes → Bidder's canal → Kidney → Vasa efferentia	nal Vesicle → Urinogenital duct → Cloaca → Ureter → Cloaca er's canal → Urinogenital duct → Cloaca
Ans: Sol:	(3)	
Q.138	suitable for fertilisation?	a very low sperm count, which technique will be
	(1) Gamete intracytoplasmic fallopian transfer(3) Intracytoplasmic sperm injection	(2) Artificial Insemination(4) Intrauterine transfer
Ans: Sol:	(2)	

Q.139	Which ecosystem has t	the maximum biomass?)	
	(1) Grassland ecosyste	m	(2) Pond ecosystem	
	(3) Lake ecosystem		(4) Forest ecosystem	
Ans:	(4)			
Sol:				
Q.140	Lungs are made up of a because of :	air-filled sacs, the alveo	li. They do not collapse e	ven after forceful expiration,
	(1) Inspiratory Reserve	Volume	(2) Tidal Volume	
	(3) Expiratory Reserve	Volume	(4) Residual Volume	
Ans: Sol:	(4)			
Q.141	Presence of plants arrabest in :	anged into well defined	vertical layers depending	g on their height can be seen
Ans: Sol:	(1) Tropical Rain Fores(1)	t (2) Grassland	(3) Temperate Forest	(4) Tropical Savannah
Q.142	(2) The ascending limb (3) The descending lim	b of loop of Henle is im of loop of Henle is peri	permeable to water. meable to water. rmeable to electrolytes.	
Ans: Sol:	(4)			
Q.143	Alexander Von Humbo	It described for the firs	t time:	
	(1) Laws of limiting fac	tor	(2) Species area relation	onships
	(3) Population Growth	equation	(4) Ecological Biodivers	sity
Ans: Sol:	(2)			
Q.144	Zygotic meiosis is chara	acteristic of :		
•	(1) Fucus	(2) Funaria	(3) Chlamydomonas	(4) Marchantia
Ans: Sol:	(3)	· ,	, ,	. ,
Q.145			·	mino acids, and the base at pases, how many codons will
	(1) 11	(2) 33	(3) 333	(4) 1
Ans:	(2)			

Q.146	Flowers which have single ovule in the ovary and are packed into inflorescence are usually pollinated by:				
Ans:	(1) Bee (2)	(2) Wind	(3) Bat	(4) Water	
Sol:					
Q.147	-	tissues/organs fails of sponse is responsible f	•	stance by the patient's body. Which	
	(1) Cell - mediated	•		mmune response	
Ans: Sol:	(3) Physiological im(1)	mune response	(4) Autoimmur	e response	
Q.148	Life cycle of <i>Ectocal</i>	rpus and Fucus respect	ively are :		
	(1) Diplontic, Haplo	•	(2) Haplodiplor	ntic, Diplontic	
Ans: Sol:	(3) Haplodiplontic,(2)	Haplontic	(4) Haplontic, [Diplontic	
O 1/19	Δ gene whose eynr	ession helps to identify	transformed cell is k	nown as :	
Q.143	(1) Vector	ession helps to luciting	(2) Plasmid	iowii us .	
	(3) Structural gene		(4) Selectable r	marker	
Ans: Sol:	(4)				
Q.150	A dioecious floweri	ng plant prevents both	ı:		
	(1) Autogamy and g	geitonogamy	(2) Geitonogan	ny and xenogamy	
Ans: Sol:	(3) Cleistogamy and (1)	d xenogamy	(4) Autogamy a	and xenogamy	
Q.151	Which statement is	wrong for Kreb's cycle	2?		
	(1) There is one poi	nt in the cycle where F	FAD ⁺ is reduced to FAD	DH_2	
	. ,	•	·	rle of GTP is synthesised CoA) with pyruvic acid to yield citric	
	(4) There are three	points in the cycle who	ere NAD ⁺ is reduced to	NADH + H ⁺	
Ans: Sol:	(3)				
Q.152	Phosphoenol pyruv	ate, (PEP) is the prima	ry CO₂ acceptor in :		
	(1) C ₄ plants	(2) C ₂ plants	(3) C_3 and C_4 pl	ants (4) C ₃ plants	
Ans: Sol:	(1)				
Q.153	During DNA replica	tion, Okazaki fragment	ts are used to elongate	2:	

Ans: Sol:	(3) The lagging strand a	away from replication fo away from the replicatio cowards replication fork				
301.						
Q.154	_	RNAs should be most at		(4) . DNIA		
Ans: Sol:	(1) t-RNA (4)	(2) m-RNA	(3) mi-RNA	(4) r-RNA		
Q.155	 GnRH, a hypothalamic hormone, needed in reproduction, acts on: (1) anterior pituitary gland and stimulates secretion of LH and FSH. (2) posterior pituitary gland and stimulates secretion of oxytocin and FSH. (3) posterior pituitary gland and stimulates secretion of LH and relaxin. (4) anterior pituitary gland and stimulates secretion of LH and oxytocin. 					
Ans: Sol:	(1)					
Q.156	What is the criterion for DNA fragments movement on agarose gel during gel electrophoresis? (1) The smaller the fragment size, the farther it moves (2) Positively charged fragments move to farther end (3) Negatively charged fragments do not move (4) The larger the fragment size, the farther it moves					
Ans: Sol:	(1)					
Q.157	(1) Epiphyseal plates cl(2) Bones loose their se(3) Muscle fibres do no		mone is adults	crease in height, because:		
Ans: Sol:	(1)					
Q.158	DNA replication in bact (1) Within nucleolus (3) Just before transcri		(2) Prior to fission(4) During S phase			
Ans: Sol:	(2)					
Q.159			d for Mendel's hybridiza	•		
Ans: Sol:	(1) 1840 - 1850 (4)	(2) 1857 - 1869	(3) 1870 - 1877	(4) 1856 - 1863		

Q.160	Viroids differ from virus	ses in having :					
	(1) DNA molecules without protein coat(3) RNA molecules without protein coat		(2) RNA molecules with protein coat (4) DNA molecules with protein coat				
Ans: Sol:	(3)						
Q.161	MALT constitutes about percent of the lymphoid tissue in human body. (1) 20% (2) 70% (3) 10% (4) 50%						
Ans: Sol:	(4)						
Q.162	Which of the following is correctly matched for the product produced by them?						
	(1) Methanobacterium	: Lactic acid	(2) Penicillium notatus : Acetic acid(4) Acetobacter aceti : Antibiotics				
Ans: Sol:	(3) Sacchromyces cerev(3)	<i>isiae</i> : Ethanol					
Q.163	Which among the following are the smallest living cells, known without a definite cell wal pathogenic to plants as well as animals and can survive without oxygen?						
Ans: Sol:	(1) Pseudomonas(2)	(2) Mycoplasma	(3) Nostoc	(4) Bacillus			
Q.164	Which of the following represents order of 'Horse'?						
Ans: Sol:	(1) Perissodactyla (1)	(2) Caballus	(3) Ferus	(4) Equidae			
Q.165	Frog's heart when taken out of the body continues to beat for sometime. Select the best option from the following statements. (a) Frog is a poikilotherm. (b) Frog does not have any coronary circulation. (c) Heart is "myogenic" in nature. (d) Heart is autoexcitable Options:						
	(1) Only (d)	(2) (a) and (d)	(3) (c) and (d)	(4) Only (c)			
Ans: Sol:	(3)						
Q.166	Homozygous purelines in cattle can be obtained by: (1) mating of unrelated individuals of same breed. (2) mating of individuals of different species. (3) mating of individuals of different species. (4) mating of related individuals of same breed. (4)						
Ans:	(4)						

Sol:							
Q.167 Ans: Sol:	Identify the wrong statement in context of heartwood: (1) It is highly durable (2) It conducts water and minerals efficiently (3) It comprises dead elements with highly lignified walls (4) Organic compounds are deposited in it (2)						
Q.168 Ans: Sol:	Anaphase Promoting Complex (APC) is a protein degradation machinery necessary for proper mitosis of animal cells. If APC is defective in a human cell, which of the following is expected to occur? (1) Chromosomes will be fragmented (2) Chromosomes will not fragmented (3) Recombination of chromosome arms will occur (4) Chromosomes will not condense (2)						
Q.169	Which of the following cell organelles is responsible for extracting energy from carbohydrates to form ATP ?						
Ans: Sol:	(1) Ribosome (3)	(2) Chloroplast	(3) Mitochondrion	(4) Lysosome			
Q.170	Mycorrhizae are the e	xample of :					
Ans: Sol:	(1) Amensalism (3)	(2) Antibiosis	(3) Mutualism	(4) Fungistasis			
Q.171	Out of 'X' pairs of ribs in humans only 'Y' pairs are true ribs. Select the option that correct represents values of X and Y and provides their explanation:						
	(1) X = 12, Y = 5 True ribs are attached dorsally to vertebral column and sternum on the two ends						
	(2) X = 24, Y = 7 True ribs are dorsally attached to vertebral column but are free on ventral side.						
	(3) X = 24, Y = 12 True ribs are dorsally attached to vertebral column but are free on ventral side.						
	(4) X = 12, Y = 7						
Ans: Sol:	(4)						
Q.172	In case of poriferans, the spongocoel is lined with flagellated cells called :						

(2) choanocytes

(1) oscula

(3) mesenchymal cells (4) ostia

Ans: Sol:	(2)						
Q.173 Ans: Sol:	Which one of the following statements is not valid for aerosols? (1) They alter rainfall and monsoon patterns (2) They cause increased agricultural productivity (3) They have negative impact on agricultural land (4) They are harmful to human health (2)						
Q.174	A baby boy aged two years is admitted to play school and passes through a dental check - up. The dentist observed that the body had twenty teeth. Which teeth were absent?						
Ans: Sol:	(1) Canines (2)	(2) Pre-molars	(3) Molars	(4) Incisors			
Q.175 Ans: Sol:	Select the mismatch (1) Cycas — (2) Salvinia — (3) Equisetum — (4) Pinus — (4)	Dioecious Heterosporous Homosporous Dioecious					
Q.176	The morphological nature of the edible part of coconut is:						
Ans: Sol:	(1) Cotyledon (2)	(2) Endosperm	(3) Pericarp	(4) Perisperm			
Q.177	7 Double fertilization is	exhibited by :					
Ans: Sol:	(1) Algae (3)	(2) Fungi	(3) Angiosperms	(4) Gymnosperms			
Q.178	Spliceosomes are not found in cells of :						
Ans: Sol:	(1) Fungi (3)	(2) Animals	(3) Bacteria	(4) Plants			
Q.179	The association of histone HI with a nucleosome indicates: (1) DNA replication is occurring (2) The DNA is condensed into a Chromatin Fibre (3) The DNA double helix is exposed (4) Transcription is occurring.						
Δnc·	(2)						

Sol:

Q.180 The region of Biosphere Reserve which is legally protected and where no human activity is allowed is known as :

(1) Buffer zone

(2) Transition zone

(3) Restoration zone

(4) Core zone

Ans: (4)

Sol: